The Production of Metabolites by Saccharomyces Cerevisiae and its Application in Biotechnological Processes

Autores

DOI:

https://doi.org/10.21664/2238-8869.2021v10i3.p174-184

Palavras-chave:

yeasts, biotechnology, metabolic routes

Resumo

Saccharomyces cerevisiae yeasts are widely known and used in biotechnological processes, as they have an excellent metabolic capacity that results in the formation of natural products with high added value. Thus, this study aims to present a view on the production of metabolites by Saccharomyces cerevisiae and their application in biotechnological processes. For this, a bibliometric analysis was carried out on the scientific production regarding the use of yeasts in biotechnological tests for the production of substances by activating their metabolic pathways. The articles found in the range between the years 2014 to 2019 are mostly research articles 57% and the rest 43% review. The analysis of the production of articles per year showed an oscillation for both research and review articles, and the countries with the highest publication rate are the United States and China. The data demonstrate a growing interest in secondary metabolic pathways of S. cerevisiae. These microorganisms can be used for the production of different metabolites that are of industrial interest, as they have a purity content that results in high commercial value.

Biografia do Autor

Margareth Batistote, Universidade Estadual de Mato Grosso do Sul

Doutora em Biotecnologia pela Universidade Estadual Paulista Júlio de Mesquita Filho/UNESP- Instituto de Química - Câmpus de Araraquara, São Paulo, Brasil;

Professora/Pesquisadora Sênior do Programa de Pós-Graduação em Recursos Naturais PGRN da Universidade Estadual de Mato Grosso do Sul/UEMS, Unidade Universitária de Dourados, Mato Grosso do Sul Brasil;

Claudia Andrea Lima Cardoso, Universidade Estadual de Mato Grosso do Sul

Doutora em Química pela Universidade Estadual Paulista Júlio de Mesquita Filho/UNESP - Instituto de Química - Câmpus de Araraquara, São Paulo, Brasil;

Docente/Pesquisadora do Programa de Pós-Graduação em Recursos Naturais PGRN da Universidade Estadual de Mato Grosso do Sul/UEMS, Unidade Universitária de Dourados, Mato Grosso do Sul Brasil;

Referências

Ahmed K, Rehman MU, Ozturk I 2017. What drives carbon dioxide emissions in the long-run? Evidence from selected South Asian Countries. Renewable and Sustainable Energy Reviews, 70, 1142-1153.
Amaya-Delgado L, Flores-Cosío G, Sandoval-Nuñez D, Arellano-Plaza M, Arrizon J, Gschaedler A 2018. Comparative of lignocellulosic ethanol production by Kluyveromyces marxianus and Saccharomyces cerevisiae. In Special Topics in Renewable Energy Systems. IntechOpen.
Araújo RF, Alvarenga L 2011. A bibliometria na pesquisa científica da pós-graduação brasileira de 1987 a 2007. Encontros Bibli: Revista Eletrônica de Biblioteconomia e Ciência da Informação 16(31):51-70.
Barbosa PMG, Santos MDSM, Dos Santos EG, Batistote M, Leite RSR 2020. Leveduras selvagens isoladas do caldo de cana com perfil para a produção de enzimas. Revista da Universidade Vale do Rio Verde 17(2):1-8.
Borneman AR, Pretorius IS 2015. Genomic insights into the Saccharomyces sensu stricto complex. Genetics 199(2):281-291.
Cardenas J, Da Silva NA 2014. Metabolic engineering of Saccharomyces cerevisiae for the production of triacetic acid lactone. Metabolic Engineering 25:194-203.
Caspeta L, Castillo T, Nielsen, J 2015. Modifying yeast tolerance to inhibitory conditions of ethanol production processes. Frontiers in Bioengineering and Biotechnology 3:184.
Compagno C, Dashko S, Piškur J 2014. Introduction to Carbon metabolism in Yeast. In: Compagno C, Piškur J. Molecular Mechanism in Yeast Carbon Metabolism. Amsterdam: Springer :1-20.
Cordente AG, Curtin CD, Varela C, Pretorius IS 2012. Flavor-active wine yeasts. Applied Microbiology an Biotechnology 96:601-618.
Cordente AG, Schmidt S, Beltran G, Torija MJ, Curtin CD 2019. Harnessing yeast metabolism of aromatic amino acids for fermented beverage bioflavouring and bioproduction. Applied Microbiology and Biotechnology 103(11):4325-4336.
Da Silva Santos AF, Santos MDSM, Maia FS, Cardoso CAL, Batistote M 2018. Perfil de produção de etanol e trealose em Saccharomyces cerevisiae cultivadas em mosto a base de caldo de cana. Scientia Plena 14(7).
Demuyser L, Van Dijck P 2019. Can Saccharomyces cerevisiae keep up as a model system in fungal azole susceptibility research?. Drug Resistance Updates 42:22-34.
Dos Santos EG, Santos MDSM, Dos Santos PG, Batistote M 2019. Ambientes naturais: uma fonte promissora para prospecção de leveduras. Educação Ambiental em Ação 18(69).
Dzialo MC, Park R, Steensels J, Lievens B, Verstrepen KJ 2017. Physiology, ecology and industrial applications of aroma formation in yeast, FEMS Microbiology Reviews 41:S95–S128.
Eichenberger M, Lehka BJ, Folly C, Fischer D, Martens S, Simón E, Naesby M 2017. Metabolic engineering of Saccharomyces cerevisiae for de novo production of dihydrochalcones with known antioxidant, antidiabetic, and sweet tasting properties. Metabolic Engineering 39:80-89.
Félix CR, Andrade DA, Almeida JH, Navarro HMC, Fell JW, Landell MF 2020. Vishniacozyma alagoana sp. nov. a tremellomycetes yeast associated with plants from dry and rainfall tropical forests. International Journal of Systematic and Evolutionary Microbiology 70(5):3449-3454.
Ferreira RM, Mota MJ, Lopes RP, Sousa S, Gomes AM, Delgadillo I, Saraiva JA 2019. Adaptation of Saccharomyces cerevisiae to high pressure (15, 25 and 35 MPa) to enhance the production of bioethanol. Food Research International 115:352-359.
Gamero A, Belloch C, Querol A 2015. Genomic and transcriptomic analysis of aromansynthesis in two hybrids between Saccharomyces cerevisiae and S. kudriavzevii in winemaking conditions. Microbial Cell Factories 14(1):128.
Generoso WC, Schadeweg V, Oreb M, Boles E 2015. Metabolic engineering of Saccharomyces cerevisiae for production of butanol isomers. Current Opinion in Biotechnology 33:1-7.
Ginovart M, Carbó R, Blanco M, Portell X 2018. Digital image analysis of yeast single cells growing in two different oxygen concentrations to analyze the population growth and to assist individual-based modeling. Frontiers in Microbiology 8:2628.
Gold ND, Gowen CM, Lussier FX, Cautha SC, Mahadevan R, Martin VJ 2015. Metabolic engineering of a tyrosine-overproducing yeast platform using targeted metabolomics. Microbial Cell Factories 14(1):73.
Gonçalves M, Pontes A, Almeida P, Barbosa R, Serra M, Libkind D, Hutzler M, Gonçalves P, Sampaio JP 2016. Distinct domestication trajectories in top-fermenting beer yeasts and wine yeasts. Current Biology 26(20):2750-2761.
Jullesson D, David F, Pfleger B, Nielsen J 2015. Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals. Biotechnology Advances 33(7):1395-1402.
Kauark F, Manhães FC, Medeiros CH 2010. Metodologia da pesquisa: um guia prático. Itabuna: Via Litterarum.
Kawai K, Kanesaki Y, Yoshikawa H, Hirasawa T 2019. Identification of metabolic engineering targets for improving glycerol assimilation ability of Saccharomyces cerevisiae based on adaptive laboratory evolution and transcriptome analysis. Journal of Bioscience and Bioengineering 128(2):162-169.
Klein M, Carrillo M, Xiberras J, Islam ZU, Swinnen S, Nevoigt E 2016. Towards the exploitation of glycerol's high reducing power in Saccharomyces cerevisiae-based bioprocesses. Metabolic Engineering 38:464-472.
Knudsen JD, Johanson T, Lantz AE, Carlquist M 2015. Exploring the potential of the glycerol-3-phosphate dehydrogenase 2 (GPD2) promoter for recombinant gene expression in Saccharomyces cerevisiae. Biotechnology Reports 7:107-119.
Koch B, Barugahare AA, Lo TL, Huang C, Schittenhelm RB, Powell DR, Beilharz TH, Traven A 2018. A metabolic checkpoint for the yeast-to-hyphae developmental switch regulated by endogenous nitric oxide signaling. Cell Reports 25(8):2244-2258.
Krivoruchko A, Nielsen J 2015. Production of natural products through metabolic engineering of Saccharomyces cerevisiae. Current Opinion in Biotechnology 35:7-15.
Kurtzman CP, Fell JW, Boekhout J 2011. The Yeasts, A Taxonomic Study, Fifthy edition. Elsevier, 1873 p.
Li M, Kildegaard KR, Chen Y, Rodriguez A, Borodina I, Nielsen J 2015. De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae. Metabolic Engineering 32:1-11.
Lian J, Mishra S, Zhao H 2018. Recent advances in metabolic engineering of Saccharomyces cerevisiae: new tools and their applications. Metabolic Engineering 50:85-108.
Liu Y, Nielsen J 2019. Recent trends in metabolic engineering of microbial chemical factories. Current Opinion in Biotechnology 60:188-197.
Ma T, Shi B, Ye Z, Li X, Liu M, Chen Y, Xia J, Nielsen J, Deng Z, Liu T 2019. Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene. Metabolic Engineering 52:134-142.
Mattanovich D, Sauer M, Gasser B 2014. Yeast biotechnology: teaching the old dog new tricks. Microbial Cell Factories 13(1):34.
Mei YZ, Liu RX, Wang DP, Wang X, Dai CC 2015. Biocatalysis and biotransformation of resveratrol in microorganisms. Biotechnology Letters, 37(1):9-18.
Mendes R, Garbeva P, Raaijimakers JM 2013. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 37:634-663.
Mouret JR, Camarasa C, Angenieux M, Aguera E, Perez M, Farines V, Sablayrolles JM 2014. Kinetic analysis and gas–liquid balances of the production of fermentative aromas during winemaking fermentations: effect of assimilable nitrogen and temperature. Food Research International 62:1-10.
Moysés DN, Reis VCB, Almeida JRMD, Moraes LMPD, Torres FAG 2016. Xylose fermentation by Saccharomyces cerevisiae: challenges and prospects. International Journal of Molecular Sciences 17(3):207.
Naghshbandi MP, Tabatabaei M, Aghbashlo M, Gupta VK, Sulaiman A, Karimi K, Moghimi H, Maleki M 2019. Progress toward improving ethanol production through decreased glycerol generation in Saccharomyces cerevisiae by metabolic and genetic engineering approaches. Renewable and Sustainable Energy Reviews 115:109353.
Nandy SK, Srivastava RK 2018. A review on sustainable yeast biotechnological processes and applications. Microbiological Research 207:83-90.
Natsume T, Kanemaki MT 2017. Conditional degrons for controlling protein expression at the protein level. Annual Review of Genetics, 51:83-102.
Nedović V, Gibson B, Mantzouridou T, Bugarski B, Djordjević V, Kalušević A, Paraskevopoulou A, Sandell M, Šmogrovičová D, Yilmaztekin M 2015. Aroma formation by immobilized yeast cells in fermentation processes. Yeast 32(1):173-216.
Nozzi NE, Desai SH, Case AE, Atsumi S 2014. Metabolic engineering for higher alcohol production. Metabolic Engineering 25:174-182.
Ohara A, Da Silva EB, Barbosa PDPM, De Angelis DA, Macedo, GA 2016. Yeasts Bioproducts Prospection from Different Brazilian Bioomes. BAOJ Microbio 2(8).
Peng B, Plan MR, Chrysanthopoulos P, Hodson MP, Nielsen LK, Vickers CE 2017. A squalene synthase protein degradation method for improved sesquiterpene production in Saccharomyces cerevisiae. Metabolic Engineering 39:209-219.
Pereira AS, Shitsuka DM, Parreira FJ, Shitsuka R 2018. Metodologia da pesquisa científica p -119.
Prodanov CC, Freitas EC 2013. Metodologia do trabalho científico [recurso eletrônico]: métodos e técnicas da pesquisa e do trabalho acadêmico. 2. ed.– Novo Hamburgo: Feevale. Available from: https://aedmoodle.ufpa.br/pluginfile.php/291348/ modresource/content/3/2.1-E-book-Metodologia-do-Trabalho-Cientifico-2.pdf
Rabeharindranto H, Castaño-Cerezo S, Lautier T, Garcia-Alles LF, Treitz C, Tholey A, Truan G 2019. Enzyme-fusion strategies for redirecting and improving carotenoid synthesis in S. cerevisiae. Metabolic Engineering Communications 8:e00086.
Rivera EC, Yamakawa CK, Saad MB, Atala DI, Ambrosio WB, Bonomi A, Nolasco Junior J, Arossell CE 2017. Effect of temperature on sugarcane ethanol fermentation: Kinetic modeling and validation under very-high-gravity fermentation conditions. Biochemical Engineering Journal 119:2-51.
Rodriguez A, Chen Y, Khoomrung S, Özdemir E, Borodina I, Nielsen J 2017. Comparison of the metabolic response to over-production of p-coumaric acid in two yeast strains. Metabolic Engineering 44:265-272.
Stone BW, Weingarten EA, Jackson CR 2018. The role of the phyllosphere microbiome in plant health and function. Annual Plant Reviews online p-533-556.
Stribny J, Gamero A, Pérez-Torrado R, Querol A 2015. Saccharomyces kudriavzevii and Saccharomyces uvarum differ from Saccharomyces cerevisiae during the production of aroma-active higher alcohols and acetate esters using their amino acidic precursors. International Journal of Food Microbiology 205:41-46.
Tang X, Lee J, Chen WN 2015. Engineering the fatty acid metabolic pathway in Saccharomyces cerevisiae for advanced biofuel production. Metabolic Engineering Communications 2:58-66.
Tortora GJ, Funke B, Case CL 2012. Microbiologia. 10. ed. Porto Alegre: Artmed.
Trantas EA, Koffas MA, Xu P, Ververidis F 2015. When plants produce not enough or at all: metabolic engineering of flavonoids in microbiais hosts. Frontiers in Plant Science 6(7).
Trenchard IJ, Smolke CD 2015. Engineering strategies for the fermentative production of plant alkaloids in yeast. Metabolic Engineering 30:96-104.
Uranukul B, Woolston BM, Fink GR, Stephanopoulos G 2019. Biosynthesis of monoethylene glycol in Saccharomyces cerevisiae utilizing native glycolytic enzymes. Metabolic Engineering 51:20-31.
Wang G, Huang M, Nielsen J 2017. Exploring the potential of Saccharomyces cerevisiae for biopharmaceutical protein production. Current Opinion in Biotechnology 48:77-84.
Williams TC, Peng B, Vickers CE, Nielsen LK 2016. The Saccharomyces cerevisiae pheromone-response is a metabolically active stationary phase for bio-production. Metabolic Engineering Communications 3:142-152.
Xie W, Ye L, Lv X, Xu H, Yu H 2015. Sequential control of biosynthetic pathways for balanced utilization of metabolic intermediates in Saccharomyces cerevisiae. Metabolic Engineering 28:8-18.
Yamakawa CK, Rivera EC, Kwon H, Agudelo WEH, Saad MB, Leal J, Rossell CEV, Bonomi A, Maciel Filho R 2019. Study of influence of yeast cells treatment on sugarcane ethanol fermentation: Operating conditions and kinetics. Biochemical Engineering Journal 147:1-10.
Zhang J, Zhang B, Wang B, Gao X, Sun L, Hong J 2015. Rapid ethanol production at elevated temperatures by engineered thermotolerant Kluyveromyces marxianus via the NADP(H)-preferring xylose reductase-xylitol dehydrogenase pathway. Metabolic Engineering 31:140-152.
Zhou YJ, Buijs NA, Zhu Z, Qin J, Siewers V, Nielsen J 2016. Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories. Nature Communications 7(1):1-9.
Zirpel B, Degenhardt F, Martin C, Kayser O, Stehle F 2017. Engineering yeasts as platform organisms for cannabinoid biosynthesis. Journal of Biotechnology 259:204-212.

Downloads

Publicado

2021-12-28

Como Citar

SANTOS, Maria do Socorro Mascarenhas; BATISTOTE, Margareth; CARDOSO, Claudia Andrea Lima. The Production of Metabolites by Saccharomyces Cerevisiae and its Application in Biotechnological Processes. Fronteira: Journal of Social, Technological and Environmental Science, [S. l.], v. 10, n. 3, p. 174–184, 2021. DOI: 10.21664/2238-8869.2021v10i3.p174-184. Disponível em: https://revistas2.unievangelica.edu.br/index.php/fronteiras/article/view/5821. Acesso em: 23 nov. 2024.