Processos Evolutivos na Amazônia e na Mata Atlântica

Autores/as

  • Henrique Batalha-Filho Instituto de Biologia, Universidade Federal da Bahia, Salvador, BA.
  • Cristina Yumi Miyaki Instituto de Biociências, Universidade de São Paulo, São Paulo, SP.

DOI:

https://doi.org/10.21664/2238-8869.2014v3i2.p34-44

Resumen

A Floresta Amazônica e a Mata Atlântica estão entre os ecossistemas com os maiores índices de biodiversidade do mundo, e estão separadas pela diagonal de áreas abertas da América do Sul, que é formada pelos biomas Chaco, Cerrado e Caatinga. Na Mata Atlântica estudos sobre evolução e biogeografia têm mostrado que os ciclos glaciais do Pleistoceno tiveram importante papel na diversificação da biota residente em suas florestas. Além disso, outros estudos apontam que atividades tectônicas ocorridas durante o fim do Terciário e no Quaternário possivelmente contribuíram para a diversificação de algumas linhagens. Contudo, na Amazônia, o estabelecimento da drenagem atual da bacia do Rio Amazonas tem sido atribuído como um dos principais mecanismos responsáveis para a origem da biota residente no bioma. Ademais, o soerguimento dos Andes também vem sendo apontado como um dos mecanismos responsáveis pela diversificação da Amazônia. Entretanto, tanto na Mata Atlântica quanto na Amazônia, a origem da biodiversidade parece ter sido produto de uma história bastante complexa, e assumir que esta diversificação foi originada por um ou poucos processos evolutivos é simplista demais. O que parece ter acontecido nestas florestas foi um processo de diversificação contínuo ao longo do tempo, e extremamente complexo com diversas forças atuantes.

Palavras-Chave: Biogeografia; Região Neotropical; Biodiversidade.

Citas

Ab'Saber AN 1977. Os domínios morfoclimáticos da América do Sul. Primeira aproximação. Geomorfologia 53: 1–23.
Amaro RC, Rodrigues MT, Yonenaga-Yassuda Y, Carnaval AC 2012. Demographic processes in the montane Atlantic rainforest: Molecular and cytogenetic evidence from the endemic frog Proceratophrys boiei. Mol Phylogenet Evol 62: 880–888.
Antonelli A, Sanmartín I 2011. Why are there so many plant species in the Neotropics? Taxon 60: 403–414.
Auler AS, Smart PL 2001. Late Quaternary paleoclimate in semiarid northeastern Brazil from u-series dating of travertine and water-table speleothems. Quat Res 55: 159–167.
Auler AS, Wang A, Edwards RL, Cheng H, Cristalli PS, Smart ML, Richards DA 2004. Quaternary ecological and geomorphic changes associated with rainfall events in presently semi-arid northeastern Brazil. J Quat Sci 19: 693–701.
Batalha-Filho H, Cabanne GS, Miyaki CY 2012. Phylogeography of an Atlantic forest passerine reveals demographic stability through the last glacial maximum. Mol Phylogenet Evol 65: 892–902.
Batalha-Filho H, Fjeldså J, Fabre P-H, Miyaki CY 2013. Connections between the Atlantic and the Amazonian forest avifaunas represent distinct historical events. J Ornithol 154: 41–50.
Batalha-Filho H, Miyaki CY 2011. Filogeografia da Mata Atlântica. Rev Biol 7 (Vol. Esp. Biogeografia): 31–34.
Batalha-Filho H, Waldschmidt AM, Campos LAO, Tavares MG, Fernandes-Salomão TM 2010. Phylogeography and historical demography of the Neotropical stingless bee Melipona quadrifasciata (Hymenoptera, Apidae): incongruence between morphology and mitochondrial DNA. Apidologie 41: 534–547.
Behling H 2002. South and southeast Brazilian grasslands during Late Quaternary times: a synthesis. Palaeogeogr Palaeoclimatol Palaeoecol 177: 19–27.
Behling H, Arz HW, Patzold J, Wefer G 2000. Late Quaternary vegetational and climate dynamics in northeastern Brazil, inferences from marine core GeoB3104–1. Quat Sci Rev 19: 981–994.
Behling H, Lichte M 1997. Evidence of dry and cold climatic conditions at glacial times in tropical southeastern Brazil. Quatern Res 48: 348–358.
Behling H, Pillar VDP 2007. Late Quaternary vegetation, biodiversity and fire dynamics on the southern Brazilian highland and their implication for conservation and management of modern Araucaria forest and grassland ecosystems. Philos Trans R Soc B 362: 243–251.
Brown JH, Lomolino MV 2006. Biogeografia. 2ª ed. Trad: Afonso IF. Ribeirão Preto: FUNPEC Editora.
Bush MB, de Oliveira PE 2006. The rise and fall of the refugial hypothesis of Amazonian speciation: a paleoecological perspective. Biot Neotrop 6: 1–17.
Cabanne GS, d’Horta FM, Sari EHR, Santos FR, Miyaki CY 2008. Nuclear and mitochondrial phylogeography of the Atlantic forest endemic Xiphorhynchus fuscus (Aves: Dendrocolaptidae): biogeography and systematic implications. Mol Phylogenet Evol 49: 760–773.
Cabanne GS, Santos FR, Miyaki CY 2007. Phylogeography of Xiphorhynchus fuscus (Passeriformes, Dendrocolaptidae): vicariance and recent demographic expansion in southern Atlantic forest. Biol J Linn Soc 91: 73–84.
Cabanne GS, Sari EHR, Meyer D, Santos FR, Miyaki CY 2013. Matrilineal evidence for demographic expansion, low diversity and lack of phylogeographic structure in the Atlantic forest endemic greenish schiffornis Schiffornis virescens (Aves: Tityridae). J Ornithol 154: 371–384.
Carnaval AC, Hickerson MJ, Haddad CFB, Rodrigues MT, Moritz C 2009. Stability predicts genetic diversity in the Brazilian Atlantic forest hotspot. Science 323: 785–789.
Carnaval AC, Moritz C 2008. Historical climate modeling predicts patterns of current biodiversity in the Brazilian Atlantic forest. J Biogeogr 35: 1187–1201.
Carnaval AC, Waltari E, Rodrigues MT, Rosauer D, VanDerWal J, Damasceno R, Prates I, Strangas M, Spanos Z, Rivera D, Pie MR, Firkowski CR, Bornschein MR, Ribeiro LF, Moritz C 2014. Prediction of phylogeographic endemism in an environmentally complex biome. Proc R Soc B 281: 20141461.
Carvalho JB, Almeida EAB 2010. Biogeografia da América do Sul: padrões e processos. São Paulo: Roca.
Colinvaux PA, de Oliveira PE, Bush MB 2000. Amazonian and Neotropical plant communities on glacial time scales: The failure of the aridity and refuge hypothesis. Quaternary Sci Rev 19: 141–169.
Costa LP 2003. The historical bridge between the Amazon and the Atlantic forests of Brazil: a study of molecular phylogeography with small mammals. J Biogeogr 30: 71–86.
Crisci JV, Katinas L, Posadas P 2003. Historical Biogeography: an Introduction. Cambridge: Harvard University Press.
d’Horta F, Cabanne GS, Meyer D, Miyaki CY 2011. The genetic effects of Late Quaternary climatic changes over a tropical latitudinal gradient: diversification of an Atlantic Forest passerine. Mol Ecol 20: 1932–1935.
Fernandes AM, Wink M. Aleixo A 2012. Phylogeography of the chestnut-tailed antbird (Myrmeciza hemimelaena) clarifies the role of rivers in Amazonian biogeography. J Biogeogr 39: 1524–1535.
Galindo-Leal C, Câmara IG 2005. Status do hotspot Mata Atlântica: uma síntese. In Galindo-Leal C, Câmara IG (Eds), Mata Atlântica: Biodiversidade, Ameaças e Perspectivas, Belo Horizonte, Conservação Internacional, 3–11 pp.
Grazziotin FG, Monzel M, Echeverrigaray S, Bonatto SL 2006. Phylogeography of the Bothrops jararaca complex (Serpentes: Viperidae): past fragmentation and island colonization in the Brazilian Atlantic Forest. Mol Ecol 15: 3969–3982.
Haffer J 1969. Speciation in Amazonian forest birds. Science 165: 131–137.
Hoorn C, Wesselingh FP 2010. Introduction: Amazonia, landscape and species evolution. In Hoorn C, Wesselingh FP (Eds), Amazonia: Landscape and Species Evolution: a Look into the Past, London, Blackwell, pp 1–6.
Hoorn C, Wesselingh FP, ter Steege H, Bermudez MA, Mora A, Sevink J, Sanmartín I, Sanchez-Meseguer A, Anderson CL, Figueiredo, Jaramillo C, Riff D, Negri FR, Hooghiemstra H, Lundberg J, Stadler T, Särkinen T, Antonelli A 2010. Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 330: 927–931.
Hubbell SP, He F, Condit R, Borda-de-Água L, Kellner J, ter Steege H 2008. How many tree species are there in the Amazon and how many of them will go extinct? Proc Natl Acad Sci USA 105: 11498–11504.
Maldonado-Coelho M 2012. Climatic oscillations shape the phylogeographical structure of Atlantic Forest fire-eye antbirds (Aves: Thamnophilidae). Biol J Linn Soc 105: 900–924.
Maldonado-Coelho M, Blake JG, Silveira LF, Batalha-Filho H, Ricklefs RE 2013. Rivers, refuges and population divergence of fire-eye antbirds (Pyriglena) in the Amazon Basin. J Evol Biol 26: 1090–1107.
Martins FM, Templeton AR, Pavan ACO, Kohlbach BC, Morgante JS 2009. Phylogeography of the common vampire bat (Desmodus rotundus): marked population structure, Neotropical Pleistocene vicariance and incongruence between nuclear and mtDNA markers. BMC Evol Biol 9: 294.
Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J 2000. Biodiversity hotspots for conservation priorities. Nature 403: 853–858.
Oliveira PE, Barreto AMF, Suguio K 1999. Late Pleistocene/Holocene climatic and vegetational history of the Brazilian Caatinga: the fossil dunes of the middle São Francisco River. Palaeogeogr Palaeoclimatol Palaeoecol 152: 319–337.
Patel S, Weckstein JD, Patané JSL, Bates JM, Aleixo A 2011. Temporal and spatial diversification of Pteroglossus araçaris (Aves: Ramphastidae) in the neotropics: constant rate of diversification does not support an increase in radiation during the Pleistocene. Mol Phylogenet Evol 58: 105–115.
Por FD 1992. Sooretama: the Atlantic Rain Forest of Brazil. The Haugue: SPB Academic Publishing.
Ribas CC, Aleixo A, Nogueira ACR, Miyaki CY, Cracraft J 2012. A palaeobiogeographic model for biotic diversification within Amazonia over the past three million years. Proc Royal Soc London B 279, 681–689.
Ribeiro CA, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM 2009. The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biol Cons 142: 1141–1153.
Rull V 2008. Speciation timing and neotropical biodiversity: the Tertiary–Quaternary debate in the light of molecular phylogenetic evidence. Mol Ecol 17: 2722–2729.
Rull V 2011a. Neotropical biodiversity: timing and potential drivers. Trends Ecol Evol 26: 508–513.
Rull V 2011b. Origins of biodiversity. Science 331: 398–399.
Rull V 2013. Palaeoclimates and Amazon biodiversity. J Biogeogr 40: 1413–1414.
Silva JMC, Casteleti CHM 2005. Estado da biodiversidade da Mata Atlântica brasileira. In Galindo-Leal C, Câmara IG (Eds). Mata Atlântica: Biodiversidade, Ameaças e Perspectiva., Belo Horizonte: Conservação Internacional, 43–59 pp.
Smith BT, McCormack JE, Cuervo AM, Hickerson MJ, Aleixo A, Cadena CD, Pérez-Emán J, Burney CW, Xie X, Harvey MG, Faircloth BC, Glenn TC, Derryberry EP, Prejean J, Fields S, Brumfield RT 2014. The drivers of tropical speciation. Nature doi:10.1038/nature13687.
Thomé MTC, Zamudio KR, Giovanelli JGR, Haddad CFB, Baldissera Jr FA, Alexandrino JMB 2010. Phylogeography of endemic toads and post-Pliocene persistence of the Brazilian Atlantic Forest. Mol Phylogenet Evol 55: 1018–1031.
Turchetto-Zolet AC, Pinheiro F, Salgueiro F, Palma-Silva C 2013. Phylogeographical patterns shed light on evolutionary process in South America. Mol Ecol 22: 1193–1213.
Vanzolini PE, Williams EE 1970. South American anoles: the geographic differentiation and evolution of the Anolis chrysolepis species group (Sauria: Iguanidae). Arquiv Zool (S Paulo) 19: 1–298.
Wallace AR 1852. On the monkeys of the Amazon. Proc Zool Soc London 20: 107–110.
Wang XF, Auler AS, Edwards RL, Cheng H, Cristalli PS, Smart PL, Richards DA, Shen CC 2004. Wet periods in northeastern Brazil over the past 210 kyr linked to distant climate anomalies. Nature 432: 740–743.
Watson JD, Crick FHC 1953. Molecular structure of nucleic acids. Nature 4356: 737–738.

Publicado

2014-12-28

Cómo citar

BATALHA-FILHO, Henrique; MIYAKI, Cristina Yumi. Processos Evolutivos na Amazônia e na Mata Atlântica. Fronteira: Journal of Social, Technological and Environmental Science, [S. l.], v. 3, n. 2, p. 34–44, 2014. DOI: 10.21664/2238-8869.2014v3i2.p34-44. Disponível em: https://revistas2.unievangelica.edu.br/index.php/fronteiras/article/view/1001. Acesso em: 21 nov. 2024.

Número

Sección

Dossiê - Cultura, História e Biodiversidade