Starting Anti-COVID-19 Drug Discovery with Natural Products

Autores

  • OSMAR NASCIMENTO SILVA Centro Universitário de Anápolis
  • Bruno Neves
  • Lucimar Rosseto
  • Rodrigo Moura
  • Hamilton Napolitano
  • Wesley Brito
  • James Fajemiroye
  • Emerith Pinto
  • Pál Perjési
  • José Martins

DOI:

https://doi.org/10.21664/2238-8869.2021v10i1.p241-270

Palavras-chave:

artificial Intelligence, coronaviruses, drug discovery, HCoV infection, natural products

Resumo

A COVID-19 foi caracterizada como uma pandemia devido à sua rápida disseminação e severidade em março de 2020. A família Coronaviridae recebe esse nome em relação à organização da glicoproteína 'spikes' localizada no envelope, em forma de uma coroa quando vista sob um microscópio. Os coronavírus sofrem mutações frequentes em seu genoma devido a erros cometidos pela RNA polimerase dependente de RNA (RdRp, RDR). O SARS-CoV-2, agente causador da COVID-19, é um vírus altamente infeccioso e pode ser transmitido de pessoa para pessoa. Foram relatadas atividades antivirais potentes de vários produtos naturais, como alcalóides, chalconas, triterpenóides, mas com eficácia ou segurança não confirmada clinicamente, bem como com os mecanismos subjacentes completos. O presente artigo de revisão apresenta os efeitos antivirais de produtos naturais contra SARS-CoV, HCoV-NL63, HCoV-229E e HCoV-OC43, mostrando que a licorina, emodina, promazina, saikosaponinas B2, silvestrol, la cefarantina, fangchinolina, tetrandrina, ácido cafeico, ácido clorogênico, ácido gálico e emetina são bons candidatos ao tratamento de infecções por coranavírus.

Referências

Abolnik, Celia. 2015. “Genomic and Single Nucleotide Polymorphism Analysis of Infectious Bronchitis Coronavirus.” Infection, Genetics and Evolution 32 (June): 416–24. https://doi.org/10.1016/j.meegid.2015.03.033.
Ahn, Dae Gyun, Hye Jin Shin, Mi Hwa Kim, Sunhee Lee, Hae Soo Kim, Jinjong Myoung, Bum Tae Kim, and Seong Jun Kim. 2020. “Current Status of Epidemiology, Diagnosis, Therapeutics, and Vaccines for Novel Coronavirus Disease 2019 (COVID-19).” Journal of Microbiology and Biotechnology. Korean Society for Microbiology and Biotechnology. https://doi.org/10.4014/jmb.2003.03011.
Akinboye, Emmanuel S., Marc D. Rosen, Oladapo Bakare, and Samuel R. Denmeade. 2017. “Anticancer Activities of Emetine Prodrugs That Are Proteolytically Activated by the Prostate Specific Antigen (PSA) and Evaluation of in Vivo Toxicity of Emetine Derivatives.” Bioorganic and Medicinal Chemistry 25 (24): 6707–17. https://doi.org/10.1016/j.bmc.2017.11.015.
Alehaideb, Zeyad, Kimberly C. Chin, Mei Cun Yao, and Francis C.P. Law. 2019. “Predicting the Content of Anthraquinone Bioactive in Rhei Rhizome (Rheum Officinale Baill.) with the Concentration Addition Model.” Saudi Pharmaceutical Journal 27 (1): 25–32. https://doi.org/10.1016/j.jsps.2018.07.015.
Alves, Vinicius M., Stephen J. Capuzzi, Eugene N. Muratov, Rodolpho C. Braga, Thomas E. Thornton, Denis Fourches, Judy Strickland, Nicole Kleinstreuer, Carolina H. Andrade, and Alexander Tropsha. 2016. “QSAR Models of Human Data Can Enrich or Replace LLNA Testing for Human Skin Sensitization.” Green Chemistry 18 (24): 6501–15. https://doi.org/10.1039/C6GC01836J.
Alves, Vinicius M., Duhyeong Hwang, Eugene Muratov, Marina Sokolsky-Papkov, Ekaterina Varlamova, Natasha Vinod, Chaemin Lim, Carolina H. Andrade, Alexander Tropsha, and Alexander Kabanov. 2019. “Cheminformatics-Driven Discovery of Polymeric Micelle Formulations for Poorly Soluble Drugs.” Science Advances 5 (6): eaav9784. https://doi.org/10.1126/sciadv.aav9784.
Anand, Kanchan, John Ziebuhr, Parvesh Wadhwani, Jeroen R. Mesters, and Rolf Hilgenfeld. 2003. “Coronavirus Main Proteinase (3CLpro) Structure: Basis for Design of Anti-SARS Drugs.” Science 300 (5626): 1763–67. https://doi.org/10.1126/science.1085658.
Arya, Rimanshee, Amit Das, Vishal Prashar, and Mukesh Kumar. 2020. “Potential Inhibitors against Papain-like Protease of Novel Coronavirus (SARS-CoV-2) from FDA Approved Drugs.” Chemrxiv.Org, no. February 2020 (February): 1–8. https://doi.org/10.26434/chemrxiv.11860011.v2.
Azhagiya Singam, Ettayapuram Ramaprasad, La merrill Michele, Durkin Kathleen A., and Smith Martyn T. 2020. “Structure-Based Virtual Screening of a Natural Product Database to Identify Several Possible SARS-CoV-2 Main Protease Inhibitors.” ChemRxiv, April. https://doi.org/10.26434/chemrxiv.12143394.v1.
Bacha, Usman, Jennifer Barrila, Adrian Velazquez-Campoy, Stephanie A. Leavitt, and Ernesto Freire. 2004. “Identification of Novel Inhibitors of the SARS Coronavirus Main Protease 3CLpro.” Biochemistry 43 (17): 4906–12. https://doi.org/10.1021/bi0361766.
Baell, Jonathan B., and Georgina a. Holloway. 2010. “New Substructure Filters for Removal of Pan Assay Interference Compounds (PAINS) from Screening Libraries and for Their Exclusion in Bioassays.” Journal of Medicinal Chemistry 53 (7): 2719–40. https://doi.org/10.1021/jm901137j.
Báez-Santos, Yahira M., Scott J. Barraza, Michael W. Wilson, Michael P. Agius, Anna M. Mielech, Nicole M. Davis, Susan C. Baker, Scott D. Larsen, and Andrew D. Mesecar. 2014. “X-Ray Structural and Biological Evaluation of a Series of Potent and Highly Selective Inhibitors of Human Coronavirus Papain-like Proteases.” Journal of Medicinal Chemistry 57 (6): 2393–2412. https://doi.org/10.1021/jm401712t.
Báez-Santos, Yahira M., Sarah E. St. John, and Andrew D. Mesecar. 2015. “The SARS-Coronavirus Papain-like Protease: Structure, Function and Inhibition by Designed Antiviral Compounds.” Antiviral Research. Elsevier B.V. https://doi.org/10.1016/j.antiviral.2014.12.015.
Baltimore, D. 1971. “Expression of Animal Virus Genomes.” Bacteriological Reviews 35 (3): 235–41. https://doi.org/10.1128/mmbr.35.3.235-241.1971.
Beigel, John H., Kay M. Tomashek, Lori E. Dodd, Aneesh K. Mehta, Barry S. Zingman, Andre C. Kalil, Elizabeth Hohmann, et al. 2020. “Remdesivir for the Treatment of Covid-19 — Preliminary Report.” New England Journal of Medicine, May, In press. https://doi.org/10.1056/NEJMoa2007764.
Binns, M. M., M. E.G. Boursnell, D. Cavanagh, D. J. Pappin, and T. D. Brown. 1985. “Cloning and Sequencing of the Gene Encoding the Spike Protein of the Coronavirus IBV.” Journal of General Virology 66 (4): 719–26. https://doi.org/10.1099/0022-1317-66-4-719.
Borba, Mayla Gabriela Silva, Fernando Fonseca Almeida Val, Vanderson Souza Sampaio, Marcia Almeida Araújo Alexandre, Gisely Cardoso Melo, Marcelo Brito, Maria Paula Gomes Mourão, et al. 2020. “Effect of High vs Low Doses of Chloroquine Diphosphate as Adjunctive Therapy for Patients Hospitalized With Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection: A Randomized Clinical Trial.” JAMA Network Open 3 (4): e208857. https://doi.org/10.1001/jamanetworkopen.2020.8857.
Bosch, Berend Jan, Ruurd van der Zee, Cornelis A. M. de Haan, and Peter J. M. Rottier. 2003. “The Coronavirus Spike Protein Is a Class I Virus Fusion Protein: Structural and Functional Characterization of the Fusion Core Complex.” Journal of Virology 77 (16): 8801–11. https://doi.org/10.1128/jvi.77.16.8801-8811.2003.
Braga, Rodolpho C., Vinicius M. Alves, Meryck F. B. Silva, Eugene Muratov, Denis Fourches, Luciano M. Lião, Alexander Tropsha, and Carolina H. Andrade. 2015. “Pred-HERG: A Novel Web-Accessible Computational Tool for Predicting Cardiac Toxicity.” Molecular Informatics 34 (10): 698–701. https://doi.org/10.1002/minf.201500040.
Breiman, Leo. 2001. “Random Forests.” Machine Learning 45 (1): 5–32. https://doi.org/10.1023/A:1010933404324.
Cai, Qingxian, Minghui Yang, Dongjing Liu, Jun Chen, Dan Shu, Junxia Xia, Xuejiao Liao, et al. 2020. “Experimental Treatment with Favipiravir for COVID-19: An Open-Label Control Study.” Engineering, March. https://doi.org/10.1016/j.eng.2020.03.007.
Caly, Leon, Julian D. Druce, Mike G. Catton, David A. Jans, and Kylie M. Wagstaff. 2020. “The FDA-Approved Drug Ivermectin Inhibits the Replication of SARS-CoV-2 in Vitro.” Antiviral Research 178 (June): 104787. https://doi.org/10.1016/j.antiviral.2020.104787.
Chen, Hongming, Ola Engkvist, Yinhai Wang, Marcus Olivecrona, and Thomas Blaschke. 2018. “The Rise of Deep Learning in Drug Discovery.” Drug Discovery Today 23 (6): 1241–50. https://doi.org/10.1016/j.drudis.2018.01.039.
Cheng, Pei Win, Lean Teik Ng, Lien Chai Chiang, and Chun Ching Lin. 2006. “Antiviral Effects of Saikosaponins on Human Coronavirus 229E in Vitro.” Clinical and Experimental Pharmacology and Physiology 33 (7): 612–16. https://doi.org/10.1111/j.1440-1681.2006.04415.x.
Cherkasov, Artem, Eugene N Muratov, Denis Fourches, Alexandre Varnek, Igor I Baskin, Mark Cronin, John Dearden, et al. 2014. “QSAR Modeling: Where Have You Been? Where Are You Going To?” Journal of Medicinal Chemistry 57 (12): 4977–5010. https://doi.org/10.1021/jm4004285.
Chor, S. Y., A. Y. Hui, K. F. To, K. K. Chan, Y. Y. Go, H. L.Y. Chan, W. K. Leung, and J. J.Y. Sung. 2005. “Anti-Proliferative and pro-Apoptotic Effects of Herbal Medicine on Hepatic Stellate Cell.” Journal of Ethnopharmacology 100 (1–2): 180–86. https://doi.org/10.1016/j.jep.2005.02.036.
Chouhan, Garima, Mohammad Islamuddin, Dinkar Sahal, and Farhat Afrin. 2014. “Exploring the Role of Medicinal Plant-Based Immunomodulators for Effective Therapy of Leishmaniasis.” Frontiers in Immunology. Frontiers Research Foundation. https://doi.org/10.3389/fimmu.2014.00193.
Chuang, Kangway V., Laura M. Gunsalus, and Michael J. Keiser. 2020. “Learning Molecular Representations for Medicinal Chemistry.” Journal of Medicinal Chemistry, May, In press. https://doi.org/10.1021/acs.jmedchem.0c00385.
Coutard, B., C. Valle, X. de Lamballerie, B. Canard, N. G. Seidah, and E. Decroly. 2020. “The Spike Glycoprotein of the New Coronavirus 2019-NCoV Contains a Furin-like Cleavage Site Absent in CoV of the Same Clade.” Antiviral Research 176 (April): 104742. https://doi.org/10.1016/j.antiviral.2020.104742.
Crackower, Michael A., Renu Sarao, Antonio J. Oliveira-dos-Santos, Joan Da Costa, and Liyong Zhang. 2002. “Angiotensin-Converting Enzyme 2 Is an Essential Regulator of Heart Function.” Nature 417 (6891): 822–28. https://doi.org/10.1038/nature00786.
Dong, Liying, Shasha Hu, and Jianjun Gao. 2020. “Discovering Drugs to Treat Coronavirus Disease 2019 (COVID-19).” Drug Discoveries & Therapeutics 14 (1): 58–60. https://doi.org/10.5582/ddt.2020.01012.
Donoghue, M., F. Hsieh, E. Baronas, K. Godbout, M. Gosselin, N. Stagliano, M. Donovan, et al. 2000. “A Novel Angiotensin-Converting Enzyme-Related Carboxypeptidase (ACE2) Converts Angiotensin I to Angiotensin 1-9.” Circulation Research 87 (5). https://doi.org/10.1161/01.res.87.5.e1.
Ekins, Sean, Ana C. Puhl, Kimberley M. Zorn, Thomas R. Lane, Daniel P. Russo, Jennifer J. Klein, Anthony J. Hickey, and Alex M. Clark. 2019. “Exploiting Machine Learning for End-to-End Drug Discovery and Development.” Nature Materials 18 (5): 435–41. https://doi.org/10.1038/s41563-019-0338-z.
Falzarano, Darryl, Emmie De Wit, Cynthia Martellaro, Julie Callison, Vincent J. Munster, and Heinz Feldmann. 2013. “Inhibition of Novel β Coronavirus Replication by a Combination of Interferon-Α2b and Ribavirin.” Scientific Reports 3 (April). https://doi.org/10.1038/srep01686.
“FDA Letter to Stakeholders: Do Not Use Ivermectin Intended for Animals as Treatment for COVID-19 in Humans | FDA.” n.d. Accessed June 17, 2020. https://www.fda.gov/animal-veterinary/product-safety-information/fda-letter-stakeholders-do-not-use-ivermectin-intended-animals-treatment-covid-19-humans.
Fourches, Denis, Eugene Muratov, Alexander Tropsha, Denis Fourchers, Eugene Muratov, and Alexander Tropsha. 2010. “Trust, but Verify: On the Importance of Chemical Structure Curation in Cheminformatics and QSAR Modeling Research.” Journal of Chemical Information and Modeling 50 (7): 1189–1204. https://doi.org/10.1021/ci100176x.
Frick, D., and A. Lam. 2006. “Understanding Helicases as a Means of Virus Control.” Current Pharmaceutical Design 12 (11): 1315–38. https://doi.org/10.2174/138161206776361147.
Funck-Brentano, Christian, and Joe-Elie Salem. 2020. “Chloroquine or Hydroxychloroquine for COVID-19: Why Might They Be Hazardous?” The Lancet, May. https://doi.org/10.1016/S0140-6736(20)31174-0.
Fung, To Sing, and Ding Xiang Liu. 2019. “Human Coronavirus: Host-Pathogen Interaction.” Annual Review of Microbiology 73 (1): 529–57. https://doi.org/10.1146/annurev-micro-020518-115759.
Gao, Jianjun, Zhenxue Tian, and Xu Yang. 2020. “Breakthrough: Chloroquine Phosphate Has Shown Apparent Efficacy in Treatment of COVID-19 Associated Pneumonia in Clinical Studies.” BioScience Trends. International Advancement Center for Medicine and Health Research Co., Ltd. https://doi.org/10.5582/BST.2020.01047.
García, Irene García, Miguel Rodriguez-Rubio, Amelia Rodríguez Mariblanca, Lucía Martínez de Soto, Lucía Díaz García, Jaime Monserrat Villatoro, Javier Queiruga Parada, et al. 2020. “A Randomized Multicenter Clinical Trial to Evaluate the Efficacy of Melatonin in the Prophylaxis of SARS-CoV-2 Infection in High-Risk Contacts (MeCOVID Trial): A Structured Summary of a Study Protocol for a Randomised Controlled Trial.” Trials 21 (1): 466. https://doi.org/10.1186/s13063-020-04436-6.
Gaulton, Anna, Louisa J Bellis, A Patricia Bento, Jon Chambers, Mark Davies, Anne Hersey, Yvonne Light, et al. 2012. “ChEMBL: A Large-Scale Bioactivity Database for Drug Discovery.” Nucleic Acids Research 40 (Database issue): D1100–1107. https://doi.org/10.1093/nar/gkr777.
Gautret, Philippe, Jean-Christophe Lagier, Philippe Parola, Van Thuan Hoang, Line Meddeb, Morgane Mailhe, Barbara Doudier, et al. 2020. “Hydroxychloroquine and Azithromycin as a Treatment of COVID-19: Results of an Open-Label Non-Randomized Clinical Trial.” International Journal of Antimicrobial Agents, March, 105949. https://doi.org/10.1016/j.ijantimicag.2020.105949.
Gayvert, Kaitlyn M., Neel S. Madhukar, and Olivier Elemento. 2016. “A Data-Driven Approach to Predicting Successes and Failures of Clinical Trials.” Cell Chemical Biology 23 (10): 1294–1301. https://doi.org/10.1016/j.chembiol.2016.07.023.
Geleris, Joshua, Yifei Sun, Jonathan Platt, Jason Zucker, Matthew Baldwin, George Hripcsak, Angelena Labella, et al. 2020. “Observational Study of Hydroxychloroquine in Hospitalized Patients with Covid-19.” New England Journal of Medicine, May. https://doi.org/10.1056/nejmoa2012410.
Gerrish, Philip J., and J. Gerardo García-Lerma. 2003. “Mutation Rate and the Efficacy of Antimicrobial Drug Treatment.” Lancet Infectious Diseases. Lancet Publishing Group. https://doi.org/10.1016/S1473-3099(03)00485-7.
Ghosh, Arun K., Jun Takayama, Yoann Aubin, Kiira Ratia, Rima Chaudhuri, Yahira Baez, Katrina Sleeman, et al. 2009. “Structure-Based Design, Synthesis, and Biological Evaluation of a Series of Novel and Reversible Inhibitors for the Severe Acute Respiratory Syndrome - Coronavirus Papain-like Protease.” Journal of Medicinal Chemistry 52 (16): 5228–40. https://doi.org/10.1021/jm900611t.
Ghosh, Arun K., Jun Takayama, Kalapala Venkateswara Rao, Kiira Ratia, Rima Chaudhuri, Debbie C. Mulhearn, Hyun Lee, et al. 2010. “Severe Acute Respiratory Syndrome Coronavirus Papain-like Novel Protease Inhibitors: Design, Synthesis, Protein-Ligand X-Ray Structure and Biological Evaluation.” Journal of Medicinal Chemistry 53 (13): 4968–79. https://doi.org/10.1021/jm1004489.
Goh, Garrett B., Nathan O. Hodas, and Abhinav Vishnu. 2017. “Deep Learning for Computational Chemistry.” Journal of Computational Chemistry 38 (16): 1291–1307. https://doi.org/10.1002/jcc.24764.
Gorbalenya, Alexander E., Susan C. Baker, Ralph S. Baric, Raoul J. de Groot, Christian Drosten, Anastasia A. Gulyaeva, Bart L. Haagmans, et al. 2020. “The Species Severe Acute Respiratory Syndrome-Related Coronavirus: Classifying 2019-NCoV and Naming It SARS-CoV-2.” Nature Microbiology. Nature Research. https://doi.org/10.1038/s41564-020-0695-z.
Gorbalenya, Alexander E., and Eugene V. Koonin. 1989. “Viral Proteins Containing the Purine NTP-Binding Sequence Pattern | Nucleic Acids Research | Oxford Academic.” Nucleic Acids Research 17 (21): 8413–38. https://doi.org/10.1093/nar/17.21.8413.
Groot, R.J. de, S.C. Baker, R. Baric, L. Enjuanes, A.E. Gorbalenya, K.V. Holmes, S. Perlman, et al. 2020. “Coronaviridae Family.” International Committee on Taxonomy of Viruses (ICTV). March 2020. https://talk.ictvonline.org/ictv-reports/ictv_9th_report/positive-sense-rna-viruses-2011/w/posrna_viruses/222/coronaviridae.
Guang Xi, Xu. 2007. “Helicases as Antiviral and Anticancer Drug Targets.” Current Medicinal Chemistry 14 (8): 883–915. https://doi.org/10.2174/092986707780362998.
Guo, Tao, Yongzhen Fan, Ming Chen, Xiaoyan Wu, Lin Zhang, Tao He, Hairong Wang, Jing Wan, Xinghuan Wang, and Zhibing Lu. 2020. “Cardiovascular Implications of Fatal Outcomes of Patients with Coronavirus Disease 2019 (COVID-19).” JAMA Cardiology. https://doi.org/10.1001/jamacardio.2020.1017.
Guy, Jodie L., Richard M. Jackson, K. Ravi Acharya, Edward D. Sturrock, Nigel M. Hooper, and Anthony J. Turner. 2003. “Angiotensin-Converting Enzyme-2 (ACE2): Comparative Modeling of the Active Site, Specificity Requirements, and Chloride Dependence.” Biochemistry 42 (45): 13185–92. https://doi.org/10.1021/bi035268s.
Hao, Wei, Justyna Aleksandra Wojdyla, Rong Zhao, Ruiyun Han, Rajat Das, Ivan Zlatev, Muthiah Manoharan, Meitian Wang, and Sheng Cui. 2017. “Crystal Structure of Middle East Respiratory Syndrome Coronavirus Helicase.” PLoS Pathogens 13 (6). https://doi.org/10.1371/journal.ppat.1006474.
Heurich, A., H. Hofmann-Winkler, S. Gierer, T. Liepold, O. Jahn, and S. Pohlmann. 2014. “TMPRSS2 and ADAM17 Cleave ACE2 Differentially and Only Proteolysis by TMPRSS2 Augments Entry Driven by the Severe Acute Respiratory Syndrome Coronavirus Spike Protein.” Journal of Virology 88 (2): 1293–1307. https://doi.org/10.1128/jvi.02202-13.
Ho, Tin Yun, Shih Lu Wu, Jaw Chyun Chen, Chia Cheng Li, and Chien Yun Hsiang. 2007. “Emodin Blocks the SARS Coronavirus Spike Protein and Angiotensin-Converting Enzyme 2 Interaction.” Antiviral Research 74 (2): 92–101. https://doi.org/10.1016/j.antiviral.2006.04.014.
Hoffmann, Markus, Hannah Kleine-Weber, Simon Schroeder, Nadine Krüger, Tanja Herrler, Sandra Erichsen, Tobias S. Schiergens, et al. 2020. “SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor.” Cell 181 (2): 271-280.e8. https://doi.org/10.1016/j.cell.2020.02.052.
Hu, Shuang, Su wen Li, Qi Yan, Xiang peng Hu, Liang yun Li, Hong Zhou, Lin xin Pan, Jun Li, Chuan pu Shen, and Tao Xu. 2019. “Natural Products, Extracts and Formulations Comprehensive Therapy for the Improvement of Motor Function in Alcoholic Liver Disease.” Pharmacological Research. Academic Press. https://doi.org/10.1016/j.phrs.2019.104501.
Hu, Tony Y., Matthew Frieman, and Joy Wolfram. 2020. “Insights from Nanomedicine into Chloroquine Efficacy against COVID-19.” Nature Nanotechnology. Nature Research. https://doi.org/10.1038/s41565-020-0674-9.
Hussain, Wajid, Kashif Syed Haleem, Ibrar Khan, Isfahan Tauseef, Sadia Qayyum, Bilal Ahmed, and Muhammad Nasir Riaz. 2017. “Medicinal Plants: A Repository of Antiviral Metabolites.” Future Virology. Future Medicine Ltd. https://doi.org/10.2217/fvl-2016-0110.
Inglot, A. D. 1969. “Comparison of the Antiviral Activity in Vitro of Some Non-Steroidal Anti-Inflammatory Drugs.” The Journal of General Virology 4 (2): 203–14. https://doi.org/10.1099/0022-1317-4-2-203.
Irie, Kei, Atsushi Nakagawa, Hirotoshi Fujita, Ryo Tamura, Masaaki Eto, Hiroaki Ikesue, Nobuyuki Muroi, Keisuke Tomii, and Tohru Hashida. 2020. “Pharmacokinetics of Favipiravir in Critically Ill Patients with COVID‐19.” Clinical and Translational Science, May, In press. https://doi.org/10.1111/cts.12827.
Irvani, Seyed Sina Naghibi, Maryam Golmohammadi, Mohamad Amin Pourhoseingholi, Shervin Shokouhi, and Ilad Alavi Darazam. 2020. “Effectiveness of Interferon Beta 1a, Compared to Interferon Beta 1b and the Usual Therapeutic Regimen to Treat Adults with Moderate to Severe COVID-19: Structured Summary of a Study Protocol for a Randomized Controlled Trial.” Trials 21 (1): 473. https://doi.org/10.1186/s13063-020-04382-3.
Islam, Muhammad T., Chandan Sarkar, Dina M. El-Kersh, Sarmin Jamaddar, Shaikh J. Uddin, Jamil A. Shilpi, and Mohammad S. Mubarak. 2020. “Natural Products and Their Derivatives against Coronavirus: A Review of the Non-Clinical and Pre-Clinical Data.” Phytotherapy Research. John Wiley and Sons Ltd. https://doi.org/10.1002/ptr.6700.
Jaimes, Javier A., Nicole M. André, Joshua S. Chappie, Jean K. Millet, and Gary R. Whittaker. 2020. “Phylogenetic Analysis and Structural Modeling of SARS-CoV-2 Spike Protein Reveals an Evolutionary Distinct and Proteolytically Sensitive Activation Loop.” Journal of Molecular Biology. https://doi.org/10.1016/j.jmb.2020.04.009.
Jain, Rajendra P., Hanna I. Pettersson, Jianmin Zhang, Katherine D. Aull, Pascal D. Fortin, Carly Huitema, Lindsay D. Eltis, et al. 2004. “Synthesis and Evaluation of Keto-Glutamine Analogues as Potent Inhibitors of Severe Acute Respiratory Syndrome 3CLpro.” In Journal of Medicinal Chemistry, 47:6113–16. J Med Chem. https://doi.org/10.1021/jm0494873.
Jasial, Swarit, Erik Gilberg, Thomas Blaschke, and Jürgen Bajorath. 2018. “Machine Learning Distinguishes with High Accuracy between Pan-Assay Interference Compounds That Are Promiscuous or Represent Dark Chemical Matter.” Journal of Medicinal Chemistry 61 (22): 10255–64. https://doi.org/10.1021/acs.jmedchem.8b01404.
Jin, Zhenming, Xiaoyu Du, Yechun Xu, Yongqiang Deng, Meiqin Liu, Yao Zhao, Bing Zhang, et al. 2020. “Structure of Mpro from COVID-19 Virus and Discovery of Its Inhibitors.” Nature 582 (7811): 289–93. https://doi.org/10.1038/s41586-020-2223-y.
Kar, Supratik, and Kunal Roy. 2013. “How Far Can Virtual Screening Take Us in Drug Discovery?” Expert Opinion on Drug Discovery 8 (3): 245–61. https://doi.org/10.1517/17460441.2013.761204.
Kawase, Miyuki, Kazuya Shirato, Lia van der Hoek, Fumihiro Taguchi, and Shutoku Matsuyama. 2012. “Simultaneous Treatment of Human Bronchial Epithelial Cells with Serine and Cysteine Protease Inhibitors Prevents Severe Acute Respiratory Syndrome Coronavirus Entry.” Journal of Virology 86 (12): 6537–45. https://doi.org/10.1128/JVI.00094-12.
Keyaerts, Els, Leen Vijgen, Piet Maes, Johan Neyts, and Marc Van Ranst. 2004. “In Vitro Inhibition of Severe Acute Respiratory Syndrome Coronavirus by Chloroquine.” Biochemical and Biophysical Research Communications 323 (1): 264–68. https://doi.org/10.1016/j.bbrc.2004.08.085.
Kim, Dae Wook, Kyung Hye Seo, Marcus J. Curtis-Long, Kyeong Yeol Oh, Jong-Won Oh, Jung Keun Cho, Kon Ho Lee, and Ki Hun Park. 2014. “Phenolic Phytochemical Displaying SARS-CoV Papain-like Protease Inhibition from the Seeds of Psoralea Corylifolia.” Journal of Enzyme Inhibition and Medicinal Chemistry 29 (1): 59–63. https://doi.org/10.3109/14756366.2012.753591.
Kim, Dong Eon, Jung Sun Min, Min Seong Jang, Jun Young Lee, Young Sup Shin, Chul Min Park, Jong Hwan Song, et al. 2019. “Natural Bis-Benzylisoquinoline Alkaloids-Tetrandrine, Fangchinoline, and Cepharanthine, Inhibit Human Coronavirus Oc43 Infection of Mrc-5 Human Lung Cells.” Biomolecules 9 (11). https://doi.org/10.3390/biom9110696.
Kitchen, Douglas B., Hélène Decornez, John R. Furr, and Jürgen Bajorath. 2004. “Docking and Scoring in Virtual Screening for Drug Discovery: Methods and Applications.” Nature Reviews Drug Discovery 3 (11): 935–49. https://doi.org/10.1038/nrd1549.
Kubo, H, Y K Yamada, and F Taguchi. 1994. “Localization of Neutralizing Epitopes and the Receptor-Binding Site within the Amino-Terminal 330 Amino Acids of the Murine Coronavirus Spike Protein.” Journal of Virology 68 (9): 5403–10. https://doi.org/10.1128/jvi.68.9.5403-5410.1994.
Kwong, Ann D., B. Govinda Rao, and Kuan Teh Jeang. 2005. “Viral and Cellular RNA Helicases as Antiviral Targets.” Nature Reviews Drug Discovery. Nature Publishing Group. https://doi.org/10.1038/nrd1853.
Lai, Michael M. C. 1990. “Corona Virus: Organization, Replication and Expression of Genome.” Annual Review of Microbiology 44 (1): 303–303. https://doi.org/10.1146/annurev.mi.44.100190.001511.
Lavecchia, Antonio. 2015. “Machine-Learning Approaches in Drug Discovery: Methods and Applications.” Drug Discovery Today 20 (3): 318–31. https://doi.org/10.1016/j.drudis.2014.10.012.
Lee, C. G., and J. Hurwitz. 1992. “A New RNA Helicase Isolated from HeLa Cells That Catalytically Translocates in the 3’ to 5’ Direction.” Journal of Biological Chemistry 267 (7): 4398–4407.
Lee, Hyun, Hao Lei, Bernard D. Santarsiero, Joseph L. Gatuz, Shuyi Cao, Amy J. Rice, Kavankumar Patel, et al. 2015. “Inhibitor Recognition Specificity of MERS-CoV Papain-like Protease May Differ from That of SARS-CoV.” ACS Chemical Biology 10 (6): 1456–65. https://doi.org/10.1021/cb500917m.
Lee, Jin Moo, Jin Beom Cho, Hee Chul Ahn, Woong Jung, and Yong Joo Jeong. 2017. “A Novel Chemical Compound for Inhibition of SARS Coronavirus Helicase.” Journal of Microbiology and Biotechnology 27 (11): 2070–73. https://doi.org/10.4014/jmb.1707.07073.
Li, F. 2005. “Structure of SARS Coronavirus Spike Receptor-Binding Domain Complexed with Receptor.” Science 309 (5742): 1864–68. https://doi.org/10.1126/science.1116480.
Li, Gang, Rui Hu, and Xuejiao Zhang. 2020. “Antihypertensive Treatment with ACEI/ARB of Patients with COVID-19 Complicated by Hypertension.” Hypertension Research. Springer Nature. https://doi.org/10.1038/s41440-020-0433-1.
Li, Geng, Yaohua Fan, Yanni Lai, Tiantian Han, Zonghui Li, Peiwen Zhou, Pan Pan, et al. 2020. “Coronavirus Infections and Immune Responses.” Journal of Medical Virology 92 (4): 424–32. https://doi.org/10.1002/jmv.25685.
Li, Guangdi, and Erik De Clercq. 2020. “Therapeutic Options for the 2019 Novel Coronavirus (2019-NCoV).” Nature Reviews. Drug Discovery. NLM (Medline). https://doi.org/10.1038/d41573-020-00016-0.
Li, Qun, Xuhua Guan, Peng Wu, Xiaoye Wang, Lei Zhou, Yeqing Tong, Ruiqi Ren, et al. 2020. “Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia.” New England Journal of Medicine 382 (13): 1199–1207. https://doi.org/10.1056/NEJMoa2001316.
Li, Shi You, Cong Chen, Hai Qing Zhang, Hai Yan Guo, Hui Wang, Lin Wang, Xiang Zhang, et al. 2005. “Identification of Natural Compounds with Antiviral Activities against SARS-Associated Coronavirus.” Antiviral Research 67 (1): 18–23. https://doi.org/10.1016/j.antiviral.2005.02.007.
Li, Wenhui, Michael J. Moore, Natalya Vasllieva, Jianhua Sui, Swee Kee Wong, Michael A. Berne, Mohan Somasundaran, et al. 2003. “Angiotensin-Converting Enzyme 2 Is a Functional Receptor for the SARS Coronavirus.” Nature 426 (6965): 450–54. https://doi.org/10.1038/nature02145.
Li, Xue, Heng Yi Yu, Zhuo Yi Wang, Hui Fang Pi, Peng Zhang, and Han Li Ruan. 2013. “Neuroprotective Compounds from the Bulbs of Lycoris Radiata.” Fitoterapia 88: 82–90. https://doi.org/10.1016/j.fitote.2013.05.006.
Lim, Hyeong Seok, Jeong Soo Im, Joo Youn Cho, Kyun Seop Bae, Terry A. Klein, Joon Sup Yeom, Tae Seon Kim, Jae Seon Choi, In Jin Jang, and Jae Won Park. 2009. “Pharmacokinetics of Hydroxychloroquine and Its Clinical Implications in Chemoprophylaxis against Malaria Caused by Plasmodium Vivax.” Antimicrobial Agents and Chemotherapy 53 (4): 1468–75. https://doi.org/10.1128/AAC.00339-08.
Lin, Longfei, Boran Ni, Hongmei Lin, Miao Zhang, Xuechun Li, Xingbin Yin, Changhai Qu, and Jian Ni. 2015. “Traditional Usages, Botany, Phytochemistry, Pharmacology and Toxicology of Polygonum Multiflorum Thunb.: A Review.” Journal of Ethnopharmacology. Elsevier Ireland Ltd. https://doi.org/10.1016/j.jep.2014.11.009.
Lindenbach, Brett D. 2013. “Virion Assembly and Release.” Current Topics in Microbiology and Immunology 2 (369): 199–218. https://doi.org/10.1007/978-3-642-27340-7-8.
Lipinski, Christopher A., Franco Lombardo, Beryl W. Dominy, and Paul J Feeney. 1997. “Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings.” Advanced Drug Delivery Reviews 23 (1–3): 3–25. https://doi.org/10.1016/S0169-409X(96)00423-1.
Liu, Yue, Qi Wang, Jianbo Yang, Xiaohan Guo, Wenxi Liu, Shuangcheng Ma, and Shaoping Li. 2018. “Polygonum Multiflorum Thunb.: A Review on Chemical Analysis, Processing Mechanism, Quality Evaluation, and Hepatotoxicity.” Frontiers in Pharmacology. Frontiers Media S.A. https://doi.org/10.3389/fphar.2018.00364.
Luan, Junwen, Yue Lu, Xiaolu Jin, and Leiliang Zhang. 2020. “Spike Protein Recognition of Mammalian ACE2 Predicts the Host Range and an Optimized ACE2 for SARS-CoV-2 Infection.” Biochemical and Biophysical Research Communications 526 (1): 165–69. https://doi.org/10.1016/j.bbrc.2020.03.047.
Lusci, Alessandro, Gianluca Pollastri, and Pierre Baldi. 2013. “Deep Architectures and Deep Learning in Chemoinformatics: The Prediction of Aqueous Solubility for Drug-Like Molecules.” Journal of Chemical Information and Modeling 53 (7): 1563–75. https://doi.org/10.1021/ci400187y.
Mahévas, Matthieu, Viet Thi Tran, Mathilde Roumier, Amélie Chabrol, Romain Paule, Constance Guillaud, Elena Fois, et al. 2020. “Clinical Efficacy of Hydroxychloroquine in Patients with Covid-19 Pneumonia Who Require Oxygen: Observational Comparative Study Using Routine Care Data.” The BMJ 369 (May). https://doi.org/10.1136/bmj.m1844.
Makino, S, J G Keck, S A Stohlman, and M M Lai. 1986. “High-Frequency RNA Recombination of Murine Coronaviruses.” Journal of Virology 57 (3): 729–37. https://doi.org/10.1128/jvi.57.3.729-737.1986.
Marmor, Michael F., Ulrich Kellner, Timothy Y.Y. Lai, Ronald B. Melles, William F. Mieler, and Flora Lum. 2016. “Recommendations on Screening for Chloroquine and Hydroxychloroquine Retinopathy (2016 Revision).” Ophthalmology 123 (6): 1386–94. https://doi.org/10.1016/j.ophtha.2016.01.058.
Marra, Marco A., Steven J.M. Jones, Caroline R. Astell, Robert A. Holt, Angela Brooks-Wilson, Yaron S.N. Butterfield, Jaswinder Khattra, et al. 2003. “The Genome Sequence of the SARS-Associated Coronavirus.” Science 300 (5624): 1399–1404. https://doi.org/10.1126/science.1085953.
McChesney, Evan W. 1983. “Animal Toxicity and Pharmacokinetics of Hydroxychloroquine Sulfate.” The American Journal of Medicine 75 (1 PART 1): 11–18. https://doi.org/10.1016/0002-9343(83)91265-2.
Michelini, Flavia M., Laura E. Alché, and Carlos A. Bueno. 2018. “Virucidal, Antiviral and Immunomodulatory Activities of β-Escin and Aesculus Hippocastanum Extract.” Journal of Pharmacy and Pharmacology 70 (11): 1561–71. https://doi.org/10.1111/jphp.13002.
Mihindukulasuriya, Kathie A., Guang Wu, Judy St. Leger, Robert W. Nordhausen, and David Wang. 2008. “Identification of a Novel Coronavirus from a Beluga Whale by Using a Panviral Microarray.” Journal of Virology 82 (10): 5084–88. https://doi.org/10.1128/jvi.02722-07.
Molinari, Gabriella. 2009. “Natural Products in Drug Discovery: Present Status and Perspectives.” Advances in Experimental Medicine and Biology 655: 13–27. https://doi.org/10.1007/978-1-4419-1132-2_2.
Momekov, Georgi, and Denitsa Momekova. 2020. “Ivermectin as a Potential COVID-19 Treatment from the Pharmacokinetic Point of View.” MedRxiv, May, 2020.04.11.20061804. https://doi.org/10.1101/2020.04.11.20061804.
Monteiro, Wuelton Marcelo, Jose Diego Brito-Sousa, Djane Baía-Da-Silva, Gisely Cardoso de Melo, André Machado Siqueira, Fernando Val, Cláudio Tadeu Daniel-Ribeiro, and Marcus Vinicius Guimarães Lacerda. 2020. “Driving Forces for Covid-19 Clinical Trials Using Chloroquine: The Need to Choose the Right Research Questions and Outcomes.” Revista Da Sociedade Brasileira de Medicina Tropical. Sociedade Brasileira de Medicina Tropical. https://doi.org/10.1590/0037-8682-0155-2020.
Müller, Christin, Falk W. Schulte, Kerstin Lange-Grünweller, Wiebke Obermann, Ramakanth Madhugiri, Stephan Pleschka, John Ziebuhr, Roland K. Hartmann, and Arnold Grünweller. 2018. “Broad-Spectrum Antiviral Activity of the EIF4A Inhibitor Silvestrol against Corona- and Picornaviruses.” Antiviral Research 150 (February): 123–29. https://doi.org/10.1016/j.antiviral.2017.12.010.
Neves, Bruno J., Rodolpho C. Braga, Cleber C. Melo-Filho, José Teófilo Moreira-Filho, Eugene N. Muratov, and Carolina Horta Andrade. 2018. “QSAR-Based Virtual Screening: Advances and Applications in Drug Discovery.” Frontiers in Pharmacology 9 (November): 1–7. https://doi.org/10.3389/fphar.2018.01275.
Nicola Nosengo. 2016. “Can You Teach Old Drugs New Tricks?” Nature 534 (7607): 314–16. https://doi.org/10.1038/534314a.
Ou, Xiuyuan, Yan Liu, Xiaobo Lei, Pei Li, Dan Mi, Lili Ren, Li Guo, et al. 2020. “Characterization of Spike Glycoprotein of SARS-CoV-2 on Virus Entry and Its Immune Cross-Reactivity with SARS-CoV.” Nature Communications 11 (1): 1–12. https://doi.org/10.1038/s41467-020-15562-9.
Paim, Francine C., Andrew S. Bowman, Lauren Miller, Brandi J. Feehan, Douglas Marthaler, Linda J. Saif, and Anastasia N. Vlasova. 2019. “Epidemiology of Deltacoronaviruses (δ-COV) and Gammacoronaviruses (γ-COV) in Wild Birds in the United States.” Viruses 11 (10). https://doi.org/10.3390/v11100897.
Pillaiyar, Thanigaimalai, Sangeetha Meenakshisundaram, and Manoj Manickam. 2020. “Recent Discovery and Development of Inhibitors Targeting Coronaviruses.” Drug Discovery Today. Elsevier Ltd. https://doi.org/10.1016/j.drudis.2020.01.015.
Pyrc, Krzysztof, Ronald Dijkman, Lea Deng, Maarten F. Jebbink, Howard A. Ross, Ben Berkhout, and Lia van der Hoek. 2006. “Mosaic Structure of Human Coronavirus NL63, One Thousand Years of Evolution.” Journal of Molecular Biology 364 (5): 964–73. https://doi.org/10.1016/j.jmb.2006.09.074.
Ratia, Kiira, Andrew Kilianski, Yahira M. Baez-Santos, Susan C. Baker, and Andrew Mesecar. 2014. “Structural Basis for the Ubiquitin-Linkage Specificity and DeISGylating Activity of SARS-CoV Papain-Like Protease.” Edited by Félix A. Rey. PLoS Pathogens 10 (5): e1004113. https://doi.org/10.1371/journal.ppat.1004113.
Rawlings, Neil D., Alan J. Barrett, Paul D. Thomas, Xiaosong Huang, Alex Bateman, and Robert D. Finn. 2018. “The MEROPS Database of Proteolytic Enzymes, Their Substrates and Inhibitors in 2017 and a Comparison with Peptidases in the PANTHER Database.” Nucleic Acids Research 46 (1): D624–D63. https://doi.org/10.1093/nar/gkx1134.
Rodrigues, Tiago, Daniel Reker, Petra Schneider, and Gisbert Schneider. 2016. “Counting on Natural Products for Drug Design.” Nature Chemistry 8 (6): 531–41. https://doi.org/10.1038/nchem.2479.
Rogers, George W., Nancy J. Richter, and William C. Merrick. 1999. “Biochemical and Kinetic Characterization of the RNA Helicase Activity of Eukaryotic Initiation Factor 4A.” Journal of Biological Chemistry 274 (18): 12236–44. https://doi.org/10.1074/jbc.274.18.12236.
Romano, Maria, Alessia Ruggiero, Flavia Squeglia, Giovanni Maga, and Rita Berisio. 2020. “A Structural View at SARS-CoV-2 RNA Replication Machinery: RNA Synthesis, Proofreading and Final Capping,” April. https://doi.org/10.20944/PREPRINTS202004.0510.V1.
Rosenberg, Eli S., Elizabeth M. Dufort, Tomoko Udo, Larissa A. Wilberschied, Jessica Kumar, James Tesoriero, Patti Weinberg, et al. 2020. “Association of Treatment with Hydroxychloroquine or Azithromycin with In-Hospital Mortality in Patients with COVID-19 in New York State.” JAMA - Journal of the American Medical Association. https://doi.org/10.1001/jama.2020.8630.
Rota, Paul A., M. Steven Oberste, Stephan S. Monroe, W. Allan Nix, Ray Campagnoli, Joseph P. Icenogle, Silvia Peñaranda, et al. 2003. “Characterization of a Novel Coronavirus Associated with Severe Acute Respiratory Syndrome.” Science 300 (5624): 1394–99. https://doi.org/10.1126/science.1085952.
Salim, Angela A., Hee Byung Chai, Ismail Rachman, Soedarsono Riswan, Leonardus B.S. Kardono, Norman R. Farnsworth, Esperanza J. Carcache-Blanco, and A. Douglas Kinghorn. 2007. “Constituents of the Leaves and Stem Bark of Aglaia Foveolata.” Tetrahedron 63 (33): 7926–34. https://doi.org/10.1016/j.tet.2007.05.074.
Saurabh, Kumar, Pukhraj Rishi, Ekta Rishi, and MohmmadSalman Kazi. 2013. “Delayed Onset Chloroquine Retinopathy Presenting 10 Years after Long-Term Usage of Chloroquine.” Middle East African Journal of Ophthalmology 20 (1): 89. https://doi.org/10.4103/0974-9233.106404.
Savarino, Andrea, Johan R. Boelaert, Antonio Cassone, Giancarlo Majori, and Roberto Cauda. 2003. “Effects of Chloroquine on Viral Infections: An Old Drug against Today’s Diseases?” Lancet Infectious Diseases. Lancet Publishing Group. https://doi.org/10.1016/S1473-3099(03)00806-5.
Schoeman, Dewald, and Burtram C. Fielding. 2019. “Coronavirus Envelope Protein: Current Knowledge.” Virology Journal. BioMed Central Ltd. https://doi.org/10.1186/s12985-019-1182-0.
Semwal, Deepak Kumar, Ruchi Badoni, Ravindra Semwal, Sudhir Kumar Kothiyal, Gur Jas Preet Singh, and Usha Rawat. 2010. “The Genus Stephania (Menispermaceae): Chemical and Pharmacological Perspectives.” Journal of Ethnopharmacology. Elsevier. https://doi.org/10.1016/j.jep.2010.08.047.
Sepay, Nayim, Nadir Sepay, Ashique Al Hoque, Rina Mondal, Umesh Chandra Halder, and Mohd Muddassir. 2020. “In Silico Fight against Novel Coronavirus by Finding Chromone Derivatives as Inhibitor of Coronavirus Main Proteases Enzyme.” Structural Chemistry. https://doi.org/10.1007/s11224-020-01537-5.
Shadrick, William R., Jean Ndjomou, Rajesh Kolli, Sourav Mukherjee, Alicia M. Hanson, and David N. Frick. 2012. “Discovering New Medicines Targeting Helicases: Challenges and Recent Progress.” Journal of Biomolecular Screening. J Biomol Screen. https://doi.org/10.1177/1087057113482586.
Shang, Jian, Yushun Wan, Chuming Luo, Gang Ye, Qibin Geng, Ashley Auerbach, and Fang Li. 2020. “Cell Entry Mechanisms of SARS-CoV-2.” Proceedings of the National Academy of Sciences, May. https://doi.org/10.1073/PNAS.2003138117.
Shang, Jian, Gang Ye, Ke Shi, Yushun Wan, Chuming Luo, Hideki Aihara, Qibin Geng, Ashley Auerbach, and Fang Li. 2020. “Structural Basis of Receptor Recognition by SARS-CoV-2.” Nature 581 (7807): 221–24. https://doi.org/10.1038/s41586-020-2179-y.
Sheahan, Timothy P., Amy C. Sims, Rachel L. Graham, Vineet D. Menachery, Lisa E. Gralinski, James B. Case, Sarah R. Leist, et al. 2017. “Broad-Spectrum Antiviral GS-5734 Inhibits Both Epidemic and Zoonotic Coronaviruses.” Science Translational Medicine 9 (396). https://doi.org/10.1126/scitranslmed.aal3653.
Shen, Liang, Junwei Niu, Chunhua Wang, Baoying Huang, Wenling Wang, Na Zhu, Yao Deng, et al. 2019. “High-Throughput Screening and Identification of Potent Broad-Spectrum Inhibitors of Coronaviruses.” Journal of Virology 93 (12). https://doi.org/10.1128/jvi.00023-19.
Shi, Shaobo, Mu Qin, Bo Shen, Yuli Cai, Tao Liu, Fan Yang, Wei Gong, et al. 2020. “Association of Cardiac Injury with Mortality in Hospitalized Patients with COVID-19 in Wuhan, China.” JAMA Cardiology. https://doi.org/10.1001/jamacardio.2020.0950.
Silva, Maria Fátima das Graças Fernandes da, João Batista Fernandes, Moacir Rossi Forim, Paulo Cezar Vieira, and Israel Cívico Gil de Sá. 2013. “Alkaloids Derived from Anthranilic Acid: Quinoline, Acridone, and Quinazoline.” In Natural Products: Phytochemistry, Botany and Metabolism of Alkaloids, Phenolics and Terpenes, edited by Kishan Gopal Ramawat and Jean-Michel Mérillon, 1st ed., 715–859. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-22144-6_25.
Singh, Shantanu, Anne E Carpenter, and Auguste Genovesio. 2014. “Increasing the Content of High-Content Screening: An Overview.” Journal of Biomolecular Screening 19 (5): 640–50. https://doi.org/10.1177/1087057114528537.
Singleton, Martin R., Mark S. Dillingham, and Dale B. Wigley. 2007. “Structure and Mechanism of Helicases and Nucleic Acid Translocases.” Annual Review of Biochemistry 76 (1): 23–50. https://doi.org/10.1146/annurev.biochem.76.052305.115300.
Smit, Cornelis, Mariska Y.M. Peeters, John N. van den Anker, and Catherijne A.J. Knibbe. 2020. “Chloroquine for SARS-CoV-2: Implications of Its Unique Pharmacokinetic and Safety Properties.” Clinical Pharmacokinetics 59 (6): 659–69. https://doi.org/10.1007/s40262-020-00891-1.
Spiga, Ottavia, Andrea Bernini, Arianna Ciutti, Stefano Chiellini, Nicola Menciassi, Francesca Finetti, Vincenza Causarono, Francesca Anselmi, Filippo Prischi, and Neri Niccolai. 2003. “Molecular Modelling of S1 and S2 Subunits of SARS Coronavirus Spike Glycoprotein.” Biochemical and Biophysical Research Communications 310 (1): 78–83. https://doi.org/10.1016/j.bbrc.2003.08.122.
Su, Shuo, Gary Wong, Weifeng Shi, Jun Liu, Alexander C K Lai, Jiyong Zhou, Wenjun Liu, Yuhai Bi, and George F Gao. 2016. “Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses.” https://doi.org/10.1016/j.tim.2016.03.003.
Sungnak, Waradon, Ni Huang, Christophe Bécavin, Marijn Berg, Rachel Queen, Monika Litvinukova, Carlos Talavera-López, et al. 2020. “SARS-CoV-2 Entry Factors Are Highly Expressed in Nasal Epithelial Cells Together with Innate Immune Genes.” Nature Medicine 26 (5): 681–87. https://doi.org/10.1038/s41591-020-0868-6.
Takiuchi, Elisabete, Marco Antônio Bacellar Barreiros, Alice Fernandes Alfieri, and Amauri Alcindo Alfieri. 2007. “Identification of a Mutation in the Spike Protein Cleavage Site in Brazilian Strains of Wild-Type Bovine Coronavirus.” Brazilian Journal of Microbiology 38 (4): 699–703. https://doi.org/10.1590/S1517-83822007000400021.
Tang, Wei, Zhujun Cao, Mingfeng Han, Zhengyan Wang, Junwen Chen, Wenjin Sun, Yaojie Wu, et al. 2020. “Hydroxychloroquine in Patients with Mainly Mild to Moderate Coronavirus Disease 2019: Open Label, Randomised Controlled Trial.” The BMJ 369 (May). https://doi.org/10.1136/bmj.m1849.
Tanner, Julian A., Bo Jian Zheng, Jie Zhou, Rory M. Watt, Jie Qing Jiang, Kin Ling Wong, Yong Ping Lin, et al. 2005. “The Adamantane-Derived Bananins Are Potent Inhibitors of the Helicase Activities and Replication of SARS Coronavirus.” Chemistry and Biology 12 (3): 303–11. https://doi.org/10.1016/j.chembiol.2005.01.006.
Tanrikulu, Yusuf, Björn Krüger, and Ewgenij Proschak. 2013. “The Holistic Integration of Virtual Screening in Drug Discovery.” Drug Discovery Today 18 (7–8): 358–64. https://doi.org/10.1016/j.drudis.2013.01.007.
Tipnis, Sarah R., Nigel M. Hooper, Ralph Hyde, Eric Karran, Gary Christie, and Anthony J. Turner. 2000. “A Human Homolog of Angiotensin-Converting Enzyme: Cloning and Functional Expression as a Captopril-Insensitive Carboxypeptidase.” Journal of Biological Chemistry 275 (43): 33238–43. https://doi.org/10.1074/jbc.M002615200.
Tsai, Yu Chi, Chia Lin Lee, Hung Rong Yen, Young Sheng Chang, Yu Ping Lin, Su Hua Huang, and Cheng Wen Lin. 2020. “Antiviral Action of Tryptanthrin Isolated from Strobilanthes Cusia Leaf against Human Coronavirus Nl63.” Biomolecules. MDPI AG. https://doi.org/10.3390/biom10030366.
Uhal, Bruce D., Xiaopeng Li, Anita Xue, Xu Gao, and Amal Abdul-Hafez. 2011. “Regulation of Alveolar Epithelial Cell Survival by the ACE-2/Angiotensin 1-7/ Mas Axis.” American Journal of Physiology - Lung Cellular and Molecular Physiology 301 (3): L269. https://doi.org/10.1152/ajplung.00222.2010.
Valdés, G., L. A.A. Neves, L. Anton, J. Corthorn, C. Chacón, A. M. Germain, D. C. Merrill, et al. 2006. “Distribution of Angiotensin-(1-7) and ACE2 in Human Placentas of Normal and Pathological Pregnancies.” Placenta 27 (2–3): 200–207. https://doi.org/10.1016/j.placenta.2005.02.015.
Vapnik, Vladmir Vladimir. 2000. The Nature of Statistical Learning Theory. 2nd ed. New York: Springer.
Veber, Daniel F., Stephen R. Johnson, Hung Yuan Cheng, Brian R Smith, Keith W. Ward, and Kenneth D. Kopple. 2002. “Molecular Properties That Influence the Oral Bioavailability of Drug Candidates.” Journal of Medicinal Chemistry 45 (12): 2615–23. https://doi.org/10.1021/jm020017n.
Vickers, Chad, Paul Hales, Virendar Kaushik, Larry Dick, James Gavin, Jin Tang, Kevin Godbout, et al. 2002. “Hydrolysis of Biological Peptides by Human Angiotensin-Converting Enzyme-Related Carboxypeptidase.” Journal of Biological Chemistry 277 (17): 14838–43. https://doi.org/10.1074/jbc.M200581200.
Viegas, Cláudio, Vanderlan Da Silva Bolzani, and Eliezer J. Barreiro. 2006. “OS Produtos Naturais e a Química Medicinal Moderna.” Quimica Nova 29 (2): 326–37. https://doi.org/10.1590/s0100-40422006000200025.
Villegas, M., D. Vargas, J. D. Msonthi, A. Marston, and K. Hostettmann. 1988. “Isolation of the Antifungal Compounds Falcarindiol and Sarisan from Heteromorpha Trifoliata.” Planta Medica 54 (1): 36–37. https://doi.org/10.1055/s-2006-962326.
Walls, Alexandra C., Young Jun Park, M. Alejandra Tortorici, Abigail Wall, Andrew T. McGuire, and David Veesler. 2020. “Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein.” Cell 181 (2): 281-292.e6. https://doi.org/10.1016/j.cell.2020.02.058.
Wan, Yushun, Jian Shang, Rachel Graham, Ralph S. Baric, and Fang Li. 2020. “Receptor Recognition by the Novel Coronavirus from Wuhan: An Analysis Based on Decade-Long Structural Studies of SARS Coronavirus.” Journal of Virology 94 (7). https://doi.org/10.1128/JVI.00127-20.
Wang, Ke, Wei Chen, Yu-Sen Zhou, Jian-Qi Lian, Zheng Zhang, Peng Du, Li Gong, et al. 2020. “SARS-CoV-2 Invades Host Cells via a Novel Route: CD147-Spike Protein.” BioRxiv, March, 2020.03.14.988345. https://doi.org/10.1101/2020.03.14.988345.
Wang, Li-Fong, You-Sheng Lin, Nan-Chieh Huang, Chia-Yi Yu, Wei-Lun Tsai, Jih-Jung Chen, Toru Kubota, et al. 2015. “Hydroxychloroquine-Inhibited Dengue Virus Is Associated with Host Defense Machinery.” Journal of Interferon & Cytokine Research 35 (3): 143–56. https://doi.org/10.1089/jir.2014.0038.
Wang, Liqiang, Rui Yang, Bochuan Yuan, Ying Liu, and Chunsheng Liu. 2015. “The Antiviral and Antimicrobial Activities of Licorice, a Widely-Used Chinese Herb.” Acta Pharmaceutica Sinica B. Chinese Academy of Medical Sciences. https://doi.org/10.1016/j.apsb.2015.05.005.
Wang, Yanli, Jewen Xiao, Tugba O Suzek, Jian Zhang, Jiyao Wang, Zhigang Zhou, Lianyi Han, et al. 2012. “PubChem’s BioAssay Database.” Nucleic Acids Research 40 (Database issue): D400–412. https://doi.org/10.1093/nar/gkr1132.
Weng, Jing Ru, Chen Sheng Lin, Hsueh Chou Lai, Yu Ping Lin, Ching Ying Wang, Yu Chi Tsai, Kun Chang Wu, Su Hua Huang, and Cheng Wen Lin. 2019. “Antiviral Activity of Sambucus FormosanaNakai Ethanol Extract and Related Phenolic Acid Constituents against Human Coronavirus NL63.” Virus Research 273 (November): 197767. https://doi.org/10.1016/j.virusres.2019.197767.
WHO, World Health Organization. 2020. “Coronavirus Disease (COVID-19) Pandemic.” March 11, 2020. https://www.who.int/emergencies/diseases/novel-coronavirus-2019.
Woo, P. C. Y., S. K. P. Lau, C. S. F. Lam, A. K. L. Tsang, S.-W. Hui, R. Y. Y. Fan, P. Martelli, and K.-Y. Yuen. 2014. “Discovery of a Novel Bottlenose Dolphin Coronavirus Reveals a Distinct Species of Marine Mammal Coronavirus in Gammacoronavirus.” Journal of Virology 88 (2): 1318–31. https://doi.org/10.1128/jvi.02351-13.
Woo, Patrick C. Y., Susanna K. P. Lau, Chung-ming Chu, Kwok-hung Chan, Hoi-wah Tsoi, Yi Huang, Beatrice H. L. Wong, et al. 2005. “Characterization and Complete Genome Sequence of a Novel Coronavirus, Coronavirus HKU1, from Patients with Pneumonia.” Journal of Virology 79 (2): 884–95. https://doi.org/10.1128/jvi.79.2.884-895.2005.
Woo, Patrick C.Y., Yi Huang, Susanna K.P. Lau, and Kwok Yung Yuen. 2010. “Coronavirus Genomics and Bioinformatics Analysis.” Viruses. MDPI AG. https://doi.org/10.3390/v2081803.
Wrapp, Daniel, Nianshuang Wang, Kizzmekia S. Corbett, Jory A. Goldsmith, Ching-Lin Hsieh, Olubukola Abiona, Barney S. Graham, and Jason S. McLellan. 2020. “Cryo-EM Structure of the 2019-NCoV Spike in the Prefusion Conformation.” Science 367 (6483): 1260–63. https://doi.org/10.1126/SCIENCE.ABB2507.
Wu, Chung Yi, Jia Tsrong Jan, Shiou Hwa Ma, Chin Jung Kuo, Hsueh Fen Juan, Yih Shyun E. Cheng, Hsien Hua Hsu, et al. 2004. “Small Molecules Targeting Severe Acute Respiratory Syndrome Human Coronavirus.” Proceedings of the National Academy of Sciences of the United States of America 101 (27): 10012–17. https://doi.org/10.1073/pnas.0403596101.
Xudong, Xie, Chen Junzhu, Wang Xingxiang, Zhang Furong, and Liu Yanrong. 2006. “Age- and Gender-Related Difference of ACE2 Expression in Rat Lung.” Life Sciences 78 (19): 2166–71. https://doi.org/10.1016/j.lfs.2005.09.038.
Yang, Haitao, Weiqing Xie, Xiaoyu Xue, Kailin Yang, Jing Ma, Wenxue Liang, Qi Zhao, et al. 2005. “Design of Wide-Spectrum Inhibitors Targeting Coronavirus Main Proteases.” Edited by Pamela Bjorkman. PLoS Biology 3 (10): e324. https://doi.org/10.1371/journal.pbio.0030324.
Yang, Haitao, Maojun Yang, Yi Ding, Yiwei Liu, Zhiyong Lou, Zhe Zhou, Lei Sun, et al. 2003. “The Crystal Structures of Severe Acute Respiratory Syndrome Virus Main Protease and Its Complex with an Inhibitor.” Proceedings of the National Academy of Sciences of the United States of America 100 (23): 13190–95. https://doi.org/10.1073/pnas.1835675100.
Yao, Xueting, Fei Ye, Miao Zhang, Cheng Cui, Baoying Huang, Peihua Niu, Xu Liu, et al. 2020. “In Vitro Antiviral Activity and Projection of Optimized Dosing Design of Hydroxychloroquine for the Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2).” Clinical Infectious Diseases : An Official Publication of the Infectious Diseases Society of America 3 (237). https://doi.org/10.1093/cid/ciaa237.
Ye, Rong, Cynthia Montalto-Morrison, and Paul S. Masters. 2004. “Genetic Analysis of Determinants for Spike Glycoprotein Assembly into Murine Coronavirus Virions: Distinct Roles for Charge-Rich and Cysteine-Rich Regions of the Endodomain.” Journal of Virology 78 (18): 9904–17. https://doi.org/10.1128/jvi.78.18.9904-9917.2004.
Yin, Wanchao, Chunyou Mao, Xiaodong Luan, Dan-Dan Shen, Qingya Shen, Haixia Su, Xiaoxi Wang, et al. 2020. “Structural Basis for Inhibition of the RNA-Dependent RNA Polymerase from SARS-CoV-2 by Remdesivir.” Science, May, eabc1560. https://doi.org/10.1126/science.abc1560.
Yu, Mi Sun, June Lee, Jin Moo Lee, Younggyu Kim, Young Won Chin, Jun Goo Jee, Young Sam Keum, and Yong Joo Jeong. 2012. “Identification of Myricetin and Scutellarein as Novel Chemical Inhibitors of the SARS Coronavirus Helicase, NsP13.” Bioorganic and Medicinal Chemistry Letters 22 (12): 4049–54. https://doi.org/10.1016/j.bmcl.2012.04.081.
Yu, Xiao-Jing, Cheng Luo, Jian-Cheng Lin, Pei Hao, You-Yu He, Zong-Ming Guo, Lei Qin, et al. 2003. “Putative HAPN Receptor Binding Sites in SARS_CoV Spike Protein.” Acta Pharmacologica Sinica 24 (6): 481–88. http://www.ncbi.nlm.nih.gov/pubmed/12791172.
Yu, Yan, Bing Hu, Jianxin Bao, Jessica Mulvany, Eric Bielefeld, Ryan T. Harrison, Sarah A. Neton, et al. 2018. “Otoprotective Effects of Stephania Tetrandra S. Moore Herb Isolate against Acoustic Trauma.” JARO - Journal of the Association for Research in Otolaryngology 19 (6): 653–68. https://doi.org/10.1007/s10162-018-00690-3.
Zhao, Yu, Zixian Zhao, Yujia Wang, Yueqing Zhou, Yu Ma, and Wei Zuo. 2020. “Single-Cell RNA Expression Profiling of ACE2, the Putative Receptor of Wuhan 2019-NCov.” BioRxiv, January, 2020.01.26.919985. https://doi.org/10.1101/2020.01.26.919985.
Zhi, Kangkang, Jiacheng Wang, Haitian Zhao, and Xin Yang. 2019. “Self-Assembled Small Molecule Natural Product Gel for Drug Delivery: A Breakthrough in New Application of Small Molecule Natural Products.” Acta Pharmaceutica Sinica B, October. https://doi.org/10.1016/j.apsb.2019.09.009.
Zhong, N. S., B. J. Zheng, Y. M. Li, L. L.M. Poon, Z. H. Xie, K. H. Chan, P. H. Li, et al. 2003. “Epidemiology and Cause of Severe Acute Respiratory Syndrome (SARS) in Guangdong, People’s Republic of China, in February, 2003.” Lancet 362 (9393): 1353–58. https://doi.org/10.1016/S0140-6736(03)14630-2.
Zhou, Peng, Xing-Lou Yang, Xian-Guang Wang, Ben Hu, Lei Zhang, Wei Zhang, Hao-Rui Si, et al. 2020. “A Pneumonia Outbreak Associated with a New Coronavirus of Probable Bat Origin.” Nature 579 (7798): 270–73. https://doi.org/10.1038/s41586-020-2012-7.
Zhu, Na, Dingyu Zhang, Wenling Wang, Xingwang Li, Bo Yang, Jingdong Song, Xiang Zhao, et al. 2020. “A Novel Coronavirus from Patients with Pneumonia in China, 2019.” New England Journal of Medicine 382 (8): 727–33. https://doi.org/10.1056/NEJMoa2001017.
Zhu, Tian, Shuyi Cao, Pin-Chih Su, Ram Patel, Darshan Shah, Heta B Chokshi, Richard Szukala, Michael E Johnson, and Kirk E Hevener. 2013. “Hit Identification and Optimization in Virtual Screening: Practical Recommendations Based on a Critical Literature Analysis.” Journal of Medicinal Chemistry 56 (17): 6560–72. https://doi.org/10.1021/jm301916b.
Ziebuhr, John, Eric J. Snijder, and Alexander E. Gorbalenya. 2000. “Virus-Encoded Proteinases and Proteolytic Processing in the Nidovirales.” Journal of General Virology. Society for General Microbiology. https://doi.org/10.1099/0022-1317-81-4-853.
Zumla, Alimuddin, Jasper F.W. Chan, Esam I. Azhar, David S.C. Hui, and Kwok Yung Yuen. 2016. “Coronaviruses-Drug Discovery and Therapeutic Options.” Nature Reviews Drug Discovery. Nature Publishing Group. https://doi.org/10.1038/nrd.2015.37.

Downloads

Publicado

2021-03-03

Como Citar

SILVA, OSMAR NASCIMENTO et al. Starting Anti-COVID-19 Drug Discovery with Natural Products. Fronteira: Journal of Social, Technological and Environmental Science, [S. l.], v. 10, n. 1, p. 241–270, 2021. DOI: 10.21664/2238-8869.2021v10i1.p241-270. Disponível em: https://revistas2.unievangelica.edu.br/index.php/fronteiras/article/view/4719. Acesso em: 23 jan. 2025.