Contrasting fish biomarker responses between streams with different environmental conditions

Autores

  • Carlos Filipe Camilo-Cotrim Doutorado em andamento em Recursos Naturais do Cerrado pela Universidade Estadual de Goiás, UEG / Câmpus Central - Sede: Anápolis - CET, Brasil
  • Max Miller Bicudo dos Reis Graduação em andamento em Farmácia pela Universidade Estadual de Goiás UEG / Câmpus Central - Sede: Anápolis – CET, Brasil https://orcid.org/0000-0001-6764-3770
  • Fabrício Barreto Teresa Docente na Universidade Estadual de Goiás, UEG / Câmpus Central - Sede: Anápolis - CET, Brasil http://orcid.org/0000-0002-1357-4391
  • Luciana de Souza Ondei Docente na Universidade Estadual de Goiás, UEG / Câmpus Central - Sede: Anápolis - CET, Brasil https://orcid.org/0000-0001-7608-689X

DOI:

https://doi.org/10.21664/2238-8869.2021v10i1.p427-443

Palavras-chave:

Ecotoxicology; Antioxidant enzymes; Genotoxicity.

Resumo

Riachos são ambientes suscetíveis a impactos antrópicos que prejudicam os organismos aquáticos por afetarem sua homeostase. Este estudo teve como objetivo determinar variações na resposta de biomarcadores bioquímicos e genéticos de peixes sob a influência de impactos antropogênicos. Para isso, lambaris da espécie Astyanax lacustris foram expostos a um riacho impactado e a um de seus afluentes não impactados (referência) durante as estações seca e chuvosa. Para as análises bioquímicas, avaliamos as enzimas antioxidantes catalase e glutationa peroxidase e peroxidação lipídica em amostras de tecido de brânquias e fígado. Para o teste de genotoxicidade, avaliamos micronúcleos e anomalias nucleares em amostras de sangue. As enzimas antioxidantes apresentaram variação sazonal, independente do riacho; a peroxidação lipídica não diferiu entre as estações ou entre os riachos. A frequência de micronúcleos e anormalidades nucleares foi mais frequentes no riacho impactado durante a estação chuvosa, provavelmente em resposta à lixiviação de compostos tóxicos que tende a ser aumentada nessa estação. Esses resultados apoiam o uso de biomarcadores nucleares em programas de biomonitoramento.

Referências

Bailão EFLC, Santos LAC, Almeida SDS, D’Abadia PL, Morais RJ de, Matos TN de, Caramori SS, Araújo CST de, Silva Neto CDM e, Almeida LM 2020. Effect of land-use pattern on the physicochemical and genotoxic properties of water in a low-order stream in Central Brazil. Rev Ambient Água 15(3):e2486. https://doi.org/10.4136/ambi-agua.2486
Ballesteros ML, Rivetti NG, Morillo DO, Bertrand L, Amé MV, Bistoni MA 2017. Multi-biomarker responses in fish (Jenynsia multidentata) to assess the impact of pollution in rivers with mixtures of environmental contaminants. Sci Total Environ 595:711–722. https://doi.org/10.1016/j.scitotenv.2017.03.203
Beutler E 1975. Red cell metabolism: a manual of biochemical methods 2º edition. New York, Grune e Stratton, 160 pp.
Bradford MM 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3
Buss DF, Oliveira RB, Baptista DF 2008. Monitoramento Biológico de Ecossistemas Aquáticos Continentais. Oecol Bras 12(3):339-345. https://doi.org/10.4257/oeco.2008.1203.01
Carrasco KR, Tilbury KL, Myers MS 1990. Assessment of the Piscine Micronucleus Test as an in situ Biological indicator of Chemical Contaminant Effects. Can J Fish Aquat Sci 47(11):2123–2136. https://doi.org/10.1139/f90-237
Conselho Nacional do Meio Ambiente - CONAMA. Resolução nº 357, de 17 de março de 2005: dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providências. Diário Oficial da União, Brasília, n. 53, 18 mar. 2005, p. 58-63. Disponível em: <http://www.mma.gov.br/port/conama/res/res05/res35705.pdf>. Acesso em: 20 novembro 2017.
Dalzochio T, Gehlen G 2016. Confounding factors in biomonitoring using fish. Ecotoxicol Environ Contam 11(1):53–61. https://doi.org/10.5132/eec.2016.01.08
Dalzochio T, Rodrigues GZP, Simões LAR, de Souza MS, Petry IE, Andriguetti NB, Silva GJH, da Silva LB, Gehlen G 2018. In situ monitoring of the Sinos River, southern Brazil: water quality parameters, biomarkers, and metal bioaccumulation in fish. Environ Sci Pollut Res 25:9485–9500. https://doi.org/10.1007/s11356-018-1244-7
Dalzochio T, Souza MS de, Simões LAR, Silva GJH, Rodrigues GZP, Andriguetti NB, Silva LB da, Gehlen G 2019. Impact of Anthropogenic Activities on Water Quality of The Paranhana River, Southern Brazil. Braz Arch Biol Technol 62:e19180523. https://doi.org/10.1590/1678-4324-2019180523
de Lima Cardoso R, Carvalho-Neta RNF, de Castro ACL, Ferreira CFC, Silva MHL, de Jesus Azevedo JW, Sobrinho JRSC, Santos DMS 2018. Histological and Genotoxic Biomarkers in Prochilodus lacustris (Pisces, Prochilodontidae) for Environmental Assessment in a Protected Area in the Northeast of Brazil. Bull Environ Contam Toxicol 101:570–579. https://doi.org/10.1007/s00128-018-2464-8
Disner GR, Calado SLM, Silva Assis HC, Cestari MM 2017. Toxicity of naphthalene in the Neotropical Fish Astyanax Lacustris (Characiformes: Characidae) and Geophagus Brasiliensis (Perciformes: Cichlidae). Evidência 17(1):7–22. https://doi.org/10.18593/eba.v17i1.12976
Feidantsis K, Pörtner HO, Vlachonikola E, Antonopoulou E, Michaelidis B 2018. Seasonal Changes in Metabolism and Cellular Stress Phenomena in the Gilthead Sea Bream (Sparus aurata). Physiol Biochem Zool 91(3):878–895. https://doi.org/10.1086/697170
Fenech M 2000. The in vitro micronucleus technique. Mutat Res 455(1–2):81–95. https://doi.org/10.1016/S0027-5107(00)00065-8
Ghisi NC, Oliveira EC, Guiloski IC, de Lima SB, Silva de Assis HC, Longhi SJ, Prioli AJ, 2017. Multivariate and integrative approach to analyze multiple biomarkers in ecotoxicology: A field study in Neotropical region. Sci Total Environ 609:1208–1218. https://doi.org/10.1016/j.scitotenv.2017.07.266
Girardi R, Pinheiro A, Garbossa LHP, Torres É., 2016. Water quality change of rivers during rainy events in a watershed with different land uses in Southern Brazil. RBRH 21(3):514–524. https://doi.org/10.1590/2318-0331.011615179
Girotti AW 2002. Introduction to serial reviews on regulatory and cytoprotective aspects of lipid hydroperoxide metabolism. Free Radic Biol Med 33(2):153. https://doi.org/10.1016/S0891-5849(02)00854-7
Gomes JB, Pereira NJ, Sousa EL de, Sousa D da S, Lenz T de M, Santos DMS 2019. Evaluation of aquatic contamination in an urban lagoon environment in a coastal region in the north of Brazil. Biosci J 35(3):920–932. https://doi.org/10.14393/BJ-v35n3a2019-39858
Halliwell B, Gutteridge JMC 2015. Free Radicals in Biology and Medicine 5º edition. New York, Oxford University Press, 961 pp. https://doi.org/10.1093/acprof:oso/9780198717478.001.0001
Heath RL, Packer L 1968. Photoperoxidation in isolated chloroplasts. Arch Biochem Biophys 125(3):850–857. https://doi.org/10.1016/0003-9861(68)90654-1
Ighodaro OM, Akinloye OA 2018. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alex J Med 54(4):287–293. https://doi.org/10.1016/j.ajme.2017.09.001
Karr JR 1981. Assessment of Biotic Integrity Using Fish Communities. Fisheries 6(6):21–27. https://doi.org/10.1577/1548-8446(1981)006<0021:AOBIUF>2.0.CO;2
Lima LBD de, Morais PB de, Andrade RLT de, Mattos LV, Moron SE 2018. Use of biomarkers to evaluate the ecological risk of xenobiotics associated with agriculture. Environ Pollut 237:611–624. https://doi.org/10.1016/j.envpol.2018.02.011
Louiz I, Ben Hassine OK, Palluel O, Ben-Attia M, Aït-Aïssa S 2016. Spatial and temporal variation of biochemical biomarkers in Gobius niger (Gobiidae) from a southern Mediterranean lagoon (Bizerta lagoon, Tunisia): Influence of biotic and abiotic factors. Mar Pollut Bull 107(1):305–314. https://doi.org/10.1016/j.marpolbul.2016.03.045
Lushchak VI 2011. Environmentally induced oxidative stress in aquatic animals. Aquatic Toxicol 101(1):13–30. https://doi.org/10.1016/j.aquatox.2010.10.006
Madeira D, Narciso L, Cabral HN, Vinagre C, Diniz MS 2013. Influence of temperature in thermal and oxidative stress responses in estuarine fish. Comp Biochem Physiol A Mol Integr Physiol 166(2):237–243. https://doi.org/10.1016/j.cbpa.2013.06.008
Mansouri B, Ebrahimpour M, Babaei H 2012. Bioaccumulation and elimination of nickel in the organs of black fish (Capoeta fusca). Toxicol Ind Health 28(4):361–368. https://doi.org/10.1177/0748233711412425
Marques JA, Marangoni LFB, Bianchini A 2016. Bioindicadores e biomarcadores para avaliação de impactos em recifes de coral. In Zilberberg C, Abrantes, DP, Marques JA, Machado LF, Marangoni LF de B (Eds.). Conhecendo Os Recifes Brasileiros: Rede de Pesquisas Coral Vivo. Museu Nacional, UFRJ, Rio de Janeiro, p. 221–232.
Martínez-Álvarez RM, Morales AE, Sanz A 2005. Antioxidant Defenses in Fish: Biotic and Abiotic Factors. Rev Fish Biol Fish 15:75–88. https://doi.org/10.1007/s11160-005-7846-4
Mieiro CL, Dolbeth M, Marques TA, Duarte AC, Pereira ME, Pacheco M 2014. Mercury accumulation and tissue-specific antioxidant efficiency in the wild European sea bass (Dicentrarchus labrax) with emphasis on seasonality. Environ Sci Pollut Res Int 21(18): 10638–10651. https://doi.org/10.1007/s11356-014-3053-y
Mieiro CL, Pereira ME, Duarte AC, Pacheco M 2011. Brain as a critical target of mercury in environmentally exposed fish (Dicentrarchus labrax) - Bioaccumulation and oxidative stress profiles. Aquatic Toxicol 103(3–4):233–240. https://doi.org/10.1016/j.aquatox.2011.03.006
Mininni AN, Milan M, Ferraresso S, Petochi T, Di Marco P, Marino G, Livi S, Romualdi C, Bargelloni L, Patarnello T 2014. Liver transcriptome analysis in gilthead sea bream upon exposure to low temperature. BMC Genomics 15:765. https://doi.org/10.1186/1471-2164-15-765
Morozov AA, Yurchenko VV 2018. Seasonal changes in hepatic antioxidant enzyme activities of the perch Perca fluviatilis in the Upper Volga basin, Russia. Ichthyol Res 65: 265–269. https://doi.org/10.1007/s10228-017-0608-1
Oliveira M, Ahmad I, Maria VL, Ferreira CSS, Serafim A, Bebianno MJ, Pacheco M, Santos MA 2010. Evaluation of oxidative DNA lesions in plasma and nuclear abnormalities in erythrocytes of wild fish (Liza aurata) as an integrated approach to genotoxicity assessment. Mutat Res 703:83–89. https://doi.org/10.1016/j.mrgentox.2010.08.003
Ondei L de S, Teresa FB, Garcia DP, Felício AA, da Silva DGH, de Almeida EA 2020. Fish biomarker responses to perturbation by drought in streams. Neotrop Ichthyol 18(2):e190130. https://doi.org/10.1590/1982-0224-2019-0130
Petitjean Q, Jean S, Gandar A, Côte J, Laffaille P, Jacquin L 2019. Stress responses in fish: From molecular to evolutionary processes. Sci Total Environ 684:371–380. https://doi.org/10.1016/j.scitotenv.2019.05.357
Petrovic M, Ginebreda A, Acuña V, Batalla RJ, Elosegi A, Guasch H, de Alda ML, Marcé R, Muñoz I, Navarro-Ortega A, Navarro E, Vericat D, Sabater S, Barceló D 2011. Combined scenarios of chemical and ecological quality under water scarcity in Mediterranean rivers. TrAC Trends Anal Chem 30(8):1269–1278. https://doi.org/10.1016/j.trac.2011.04.012
Rocha MP da, Vaini JO, Crispim BDA, Seno LDO, Olivera KMP de, Grisolia AB 2018. Identification of microbiological contamination and mutagenic potential of surface waters of the municipality of Dourados, MS. Ciência e Natura 40:e38. https://doi.org/10.5902/2179460X29423
Santana MS, Yamamoto FY, Sandrini-Neto L, Filipak Neto F, Ortolani-Machado CF, Oliveira Ribeiro CA, Prodocimo MM 2018. Diffuse sources of contamination in freshwater fish: Detecting effects through active biomonitoring and multi-biomarker approaches. Ecotoxicol Environ Saf 149:173–181. https://doi.org/10.1016/j.ecoenv.2017.11.036
Scalon M, Rechenmacher C, Siebel A, Kayser M, Rodrigues MT, Maluf S, Rodrigues MAS, Silva L 2010. Evaluation of Sinos River water genotoxicity using the comet assay in fish. Braz J Biol 70(4 Suppl):1217–1222. https://doi.org/10.1590/S1519-69842010000600011
Sies H 1986. Biochemistry of Oxidative Stress. Angew Chem Int Ed Eng 25(12):1058–1071. https://doi.org/10.1002/anie.198610581
Sies H, Koch OR, Martino E, Boveris A 1979. Increased biliary glutathione disulfide release in chronically ethanol-treated rats. FEBS Lett 103(2):287–290. https://doi.org/10.1016/0014-5793(79)81346-0
Silva VBS, Kousky VE 2012. The South American Monsoon System: Climatology and Variability. In Wang, S.-Y. (Simon), Gillies, R. (Eds.). Modern Climatology. InTech, London, United Kingdom, p. 123–152. https://doi.org/10.5772/38565
Sposito JCV, Francisco LFV, do Amaral Crispim B, da Silva Dantas FG, de Souza JP, Viana LF, Solórzano JCJ, de Oliveira KMP, Barufatti A 2019. Influence of Land Use and Cover on Toxicogenetic Potential of Surface Water from Central-West Brazilian Rivers. Arch Environ Contam Toxicol 76(3):483–495. https://doi.org/10.1007/s00244-019-00603-2
Stevanato DJ, Ostrensky A 2018. Ontogenetic development of tetra Astyanax lacustris (Characiformes: Characidae). Neotrop Ichthyol 16(2):e170073. https://doi.org/10.1590/1982-0224-20170073
Tolbert PE, Shy CM, Allen JW 1992. Micronuclei and other nuclear anomalies in buccal smears: methods development. Mutat Res 271(1):69–77. https://doi.org/10.1016/0165-1161(92)90033-I
van der Oost R, Beyer J, Vermeulen NPE 2003. Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13(2):57–149. https://doi.org/10.1016/S1382-6689(02)00126-6
Viana LF, Súarez YR, Cardoso CAL, Crispim B do A, Cavalcante DN de C, Grisolia AB, Lima-Junior SE 2018a. The Response of Neotropical Fish Species (Brazil) on the Water Pollution: Metal Bioaccumulation and Genotoxicity. Arch Environ Contam Toxicol 75(3):476–485. https://doi.org/10.1007/s00244-018-0551-9
Viana LF, Súarez YR, Cardoso CAL, Solórzano JCJ, Crispim B do A, Grisolia AB, Lima-Junior SE 2018b. Erythrocyte Nuclear Abnormalities in Astyanax lacustris in Response to Landscape Characteristics in Two Neotropical Streams. Arch Environ Contam Toxicol 75(2):327–334. https://doi.org/10.1007/s00244-017-0476-8
Vieira CED, Costa PG, Cabrera LC, Primel EG, Fillmann G, Bianchini A, Bueno dos Reis Martinez C 2017. A comparative approach using biomarkers in feral and caged Neotropical fish: Implications for biomonitoring freshwater ecosystems in agricultural areas. Sci Total Environ 586:598–609. https://doi.org/10.1016/j.scitotenv.2017.02.026
Vieira CED, Costa PG, Caldas SS, Tesser ME, Risso WE, Escarrone ALV, Primel EG, Bianchini A, dos Reis Martinez CB 2019. An integrated approach in subtropical agro-ecosystems: Active biomonitoring, environmental contaminants, bioaccumulation, and multiple biomarkers in fish. Sci Total Environ 666:508–524. https://doi.org/10.1016/j.scitotenv.2019.02.209
Weydert CJ, Cullen JJ 2010. Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue. Nat Protoc 5(1):51–66. https://doi.org/10.1038/nprot.2009.197

Downloads

Publicado

2021-03-03

Como Citar

CAMILO-COTRIM, Carlos Filipe; REIS, Max Miller Bicudo dos; TERESA, Fabrício Barreto; ONDEI, Luciana de Souza. Contrasting fish biomarker responses between streams with different environmental conditions. Fronteira: Journal of Social, Technological and Environmental Science, [S. l.], v. 10, n. 1, p. 427–443, 2021. DOI: 10.21664/2238-8869.2021v10i1.p427-443. Disponível em: https://revistas2.unievangelica.edu.br/index.php/fronteiras/article/view/4716. Acesso em: 23 jan. 2025.