Cytotoxic and Mutagenic Effects and cell Viability of Polybia sericea Social Wasp Venom (Hymenoptera: Vespidae)

Autores

DOI:

https://doi.org/10.21664/2238-8869.2024v13i4.p62-74

Palavras-chave:

teste de ames, Artemia salina, insecta, fármaco, mutagenicidade

Resumo

The venom of social wasps can be a natural promising product for the development of drugs, since in recent decades studies have investigated its antimicrobial potential, anti-inflammatory, antioxidant, anticarcinogenic, among others for its future applicability in the pharmacological industry. Although some studies have already highlighted the importance of venom for this role, few species of social wasps have had the potential of their venom investigation. In this sense, the aim of this study was to evaluate the cytotoxicity, mutagenicity and cell viability of Polybia sericea (Oliver) venom. Cytotoxicity tests using Artemia salina, cell viability test using non-tumor and tumor cell lines and Ames test that assesses genetic and cellular instability were performed. The results show that the venom presents cytotoxicity, with LD50 of 22.1 μg mL-1. Mutagenicity was not identified in the Ames test at the concentrations studied. The venom did not present cytotoxicity for MRC-5 cell line, but was cytotoxic for CHO and tumor cell line B16F10-Nex2. Therefore, these tests show that P. sericea venom may have potential for pharmacological use, although other studies of cytotoxicity and with more tumor cell lines need to be developed.

Referências

Abrantes AF, Rocha TC, Lima ABS, Cavalcanti MT 2017. Honeybee venom: influence of collection on quality and cytotoxicity. Ciênc Rural 47(10): e20160486. http://dx.doi.org/10.1590/0103-8478cr20160486

Arani FS, Karimzadeh L, Ghafoori SM, Nabiuni M 2019. Antimutagenic and Synergistic Cytotoxic Effect of Cisplatin and Honey Bee Venom on 4T1 Invasive Mammary Carcinoma Cell Line. Adv. Pharmacol. Sci. Article ID 7581318. https://doi.org/10.1155/2019/7581318

Arcuri HA, Gomes PC, de Souza BM, Dias NB, Brigatte P, Stabeli RG, Palma MS 2016. Paulistine the functional duality of a wasp venom peptide toxin. Toxins 8(3): e61. https://doi.org/10.3390/toxins8030061

Bernardi RC, Santos-Junior LC, Guimarães IC, Macorini LFB, Antonialli-Junior WF, Cardoso CAL 2017. Screening do potencial da peçonha da formiga Odontomachus chelifer (fowler, 1980) como fonte de agentes terapêuticos. Interbio 11: 2.

Bernstein L, Kaldor J, McCann J, Pike MC 1982. An empirical approach to the statistical analysis of mutagenesis data from the Salmonella test. Mut. Res. 97:267-281. https://doi.org/10.1016/0165-1161(82)90026-7

Bickler PE 2020. Amplification of snake venom toxicity by endogenous signaling pathways. Toxins 12:1–26. https://doi.org/10.3390%2Ftoxins12020068

Brandão CRF 1999. Hymenoptera. Biodiversidade do Estado de São Paulo, Brasil: síntese do conhecimento ao final do século XX. São Paulo-Brasil: FAPESP, 141-146.

Carneiro CC, Véras JH, Góes BRL, Pérez CN, Chen-Chen L 2018. Mutagenicity and antimutagenicity of Salacia crassifolia (mart. Ex. Schult.) G. Don. evaluated by Ames test. Braz. J. Biol. 78 (2): 345-350. http://dx.doi.org/10.1590/1519-6984.166593

Cassier P, Tel-Zur D, Lensky Y 1994. The sting sheats of honey bee workers (Apis mellifera L.): Structure and alarm pheromone secretion. J. Insect Physiol. 40: 23-32. https://doi.org/10.1016/0022-1910(94)90108-2

Dias NB, De Souza BM, Gomes PC, Brigatte P, Palma MS 2015. Peptidome profiling of venom from the social wasp Polybia paulista. Toxicon 107: 290–303. https://doi.org/10.1016/j.toxicon.2015.08.013

Fotakis G, Timbrell JA 2006. In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicol. Lett. 160, 171–177. https://doi.org/10.1016/j.toxlet.2005.07.001

Fox EGP, Pianaro A, Solis DR, Delabie JHC, Vairo BC, Machado EA, Bueno OC 2012. Intraspecific and intracolonial variation in the profile of venom alkaloids and cuticular hydrocarbons of the fire ant Solenopsis saevissima Smith (Hymenoptera: Formicidae). Psyche (Camb. Mass.) Article ID 398061: 1-10. https://doi.org/10.1155/2012/398061

Freire DO, da Cunha NB, Leite ML, Kostopoulos AG, da Silva SN, de Souza AC, Nolasco DO, Franco OL, Mortari MR, Dias SC 2019. Wasp venom peptide, synoeca‐MP, from Synoeca surinama shows antimicrobial activity against human and animal pathogenic microorganisms. Peptide Sci. 112(3), e24141. https://doi.org/10.1002/pep2.24141

Freire KA, Torres MDT, Lima DB, Monteiro ML, Bezerra de Menezes RRPP, Martins AMC, Oliveira VXJr 2020. Wasp Venom Peptide as a New Antichagasic Agent. Toxicon, 181, 71– 78, DOI: 10.1016/j.toxicon.2020.04.099

Gullan PJ, Cranston PS 2017. Insetos - Fundamentos da Entomologia – 5nd ed., Brazil: Roca, 460p.

Guo Z 2016. The modification of natural products for medical use. Acta Pharm. Sin. B. 7: 119-36. https://doi.org/10.1016/j.apsb.2016.06.003

Hahn ST, O’Connor JM 2000. An investigation of the biological activity of bullrout (Notesthes robusta) venom. Toxicon 38: 79-89. https://doi.org/10.1016/s0041-0101(99)00135-x

Han SM, Hong IP, Woo SO, Kim SG, Jang HR 2017. Mutagenicity Study of Purified Bee Venom (Apis mellifera L.) by the Bacterial Reverse Mutation Assay. J. Food Hyg. Saf. 32(3): 228-233. https://doi.org/10.13103/JFHS.2017.32.3.228

Harvey AL 2014. Toxins and drug discovery. Toxicon 92: 193-200. https://doi.org/10.1016/j.toxicon.2014.10.020

King GF 2011. Venoms as a platform for human drugs: translating toxins into therapeutics. Expert Opin. Biol. Ther. 11: 1469-84. https://doi.org/10.1517/14712598.2011.621940

Kumar PS, Febriyanti RM, Sofyan FF, Luftimas DE, Abdulah R 2014. Anticancer potential of Syzygium aromaticum L. in MCF‑7 human breast cancer cell lines. Pharmacogn. Res. 6(4): e350. https://doi.org/10.4103%2F0974-8490.138291

Leite NB, Aufderhorst-Roberts A, Palma MS, Connell SD, Neto JR, Beales PA 2015. PE and PS lipids synergistically enhance membrane poration by a peptide with anticancer properties. Biophys. J. 109: 936–947. https://doi.org/10.1016/j.bpj.2015.07.033

Mendes MA, Souza BM, Santos LD, Palma MS 2004. Structural characterization of novel chemotactic and mastoparan peptides from the venom of the social wasp Agelaia pallipes by high performance liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom. 18: 636-642. https://doi.org/10.1002/rcm.1382

Meyer BN, Ferrigini NR, Putnam JE, Jacobsen LB, Nichols DE, McLaughlin JL 1982. Brine shrimp: a convenient general bioassay for active plant constituents. Planta Med. 45: 31-4. https://doi.org/10.1055/s-2007-971236

Mortelmans K, Zeiger E 2000. The Ames Salmonella microsome mutagenicity assay. Mutat. Res.-Fund. Mol. M. 455: 29-60. https://doi.org/10.1016/s0027-5107(00)00064-6

Moshi MJ, Innocent E, Magadula JJ, Otieno DF, Weisheit A, Mbabazi PK, Nondo RSO 2010. Brine shrimp toxicity of some plants used as traditional medicines in Kagera Region, north western Tanzania. Tanzania J. Health Res. 12(1): 63-67. https://doi.org/10.4314/thrb.v12i1.56287

Okumu MO, Mbaria JM, Gikunju JK, Mbuthia PG, Madadi VO, Ochola FO 2020. Enzymatic activity and brine shrimp lethality of venom from the large brown spitting cobra (Naja ashei) and its neutralization by antivenom. BMC Res. Notes 13:325. https://doi.org/10.1186/s13104-020-05167-2

Organisation for Economic Co-operation and Development – OECD 1997. Guidelinefor testing of chemicals: Bacterial Reverse Mutation Test 471 (1–1).

Palma MS 2013. Hymenoptera venom peptides. In Kastin A. Handbook of Biologically Active Peptides, 2nd ed., USA: Academic press/Elsevier, p. 416–422.

Pluzhnikov KA, Kozlov SA, Vassilevski AA, Vorontsova OV, Feofanov AV, Grishin EV 2014. Linear antimicrobial peptides from Ectatomma quadridens ant venom. Biochimica 107: 211-5. https://doi.org/10.1016/j.biochi.2014.09.012

Rahden-Starón I, Suchocki P, Czeczot H 2010. Evaluation of mutagenic activity of the organo-selenium compound Selol by use of the Salmonella Typhimurium mutagenicity assay. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 699: 44-46. https://doi.org/10.1016/j.mrgentox.2010.04.018

Sandovai IN, Flores JWV, Calla KM, Alba RA, Lloclla H, Sotero SA, Ismiño AG, Salazar ML 2020. Toxicity in Artemia salina by Hydroalcoholic Extracts of Monocotyledonous and Dicotyledonous Varieties of Medicinal Plants from the Peruvian Amazon. Chem. Eng. Trans. 79:367-372. https://doi.org/10.3303/CET2079062

Santos LD, Santos KS, Souza BM, Arcuri HÁ, Cunha-Neto E, Castro FM, Kalil JE, Palma MS 2007. Purification, sequencing and structural characterization of the phospholipase A1 from the venom of the social wasp Polybia paulista (Hymenoptera, Vespidae). Toxicon 50: 923-937. https://doi.org/10.1016/j.toxicon.2007.06.027

Simões CMO, Schenke EP, De Mello JCP, Mentz LA, Petrovick PR 2016. Farmacognosia: Do Produto Natural ao Medicamento. Brazil: Artmed Editra, 502 pp.

Somavilla A, Barbosa BC, de Souza MM, Prezoto F 2021. List of species of social wasps from Brazil. In: Prezoto F, Nascimento FS, Barbosa BC, Somavilla A (Eds). Neotropical Social Wasps: Basic and Applied Aspects. Vol. XI, Edgard Blucher, São Paulo, 293-316 pp.

Spillner E, Blank S, Jakob T 2014. Hymenoptera allergens: from venom to “venome,”. Front. Immunol. 5: 1–7. https://doi.org/10.3389/fimmu.2014.00077

Tibco Software Inc 2017. Tibco Statistica. Quick Reference software release 13.3.

Torres MDT, Andrade GP, Sato RH, Pedron CN, Manieri TM, Cerchiaro G, Ribeiro AO, de la Fuente-Nunez C, Oliveira Jr VX 2018. Natural and redesigned wasp venom peptides with selective antitumoral activity. "Beilstein J. Org. Chem. 14: 1693–1703. https://doi.org/10.3762/bjoc.14.144

Valente-Campos S, Dias CL, Barbour EDA, de Souza Nascimento E, de Aragão Umbuzeiro G 2009. The introduction of the Salmonella/microsome mutagenicity assay in a groundwater monitoring program. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 675: 17-22. https://doi.org/10.1016/j.mrgentox.2009.01.006

Varanda EA, Monti R, Tavares DC 1999. Inhibitory Effect of Propolis and BeeVenom on the Mutagenicity of Some Direct- and Indirect-Acting Mutagens. Teratog. Carcinog. Mutagen. 19: 403-413.

Varella SD, Pozetti GL, Vilegas W, Varanda EA 2004. Mutagenic activity of sweepings and pigments a household-wax factory assayed with Salmonella Typhimurium. Food Chem. Toxicol. 42: 2029-35. https://doi.org/10.1016/j.fct.2004.07.019

Vargas VM, Motta VE, Henriques J 1993. Mutagenic activity detected by the Ames test in river water under the influence of petrochemical industries. Mut. Res. 319(1), 31–45. https://doi.org/10.1016/0165-1218(93)90028-C

Verri AM, Moura AA, Moura VM 2017. Testes citogenéticos na avaliação da genotoxicidade de produtos naturais provindos de plantas medicinais. UNINGÁ Rev. 30(1):2171-2578.

Wang K, Yan J, Zhang B, Song J, Jia P, Wang R 2009. Novel mode of action of polybia- MPI, a novel antimicrobial peptide, in multi-drug resistant leukemic cells. Cancer Lett. 278: 65–72. https://doi.org/10.1016/j.canlet.2008.12.027

Wang K, Zhang B, Zhang W, Yan LJ, Wang R 2008. Antitumor effects, cell selectivity and structure-activity relationship of a novel antimicrobial peptide polybia-MPI. Peptides 29: 963–968. https://doi.org/10.1016/j.peptides.2008.01.015

Whitman DW, Blum MB, ALSOP DW 1990. Allomones: Chemicals for Defense. In DL Evans, J Smith. Insect defenses. EUA: State University of New York Press, p. 289-351.

Wilson EO 1971. Insect societies. Inglaterra: Belknap Press of Harvard University Press, 562 pp.

Xiao J, Zhao X, Zhong WT, Jiao FR, Wang XL, Ma L, Duan DZ, Yang DZ, Tang SQ 2018. Bufadienolides from the venom of Bufo bufo gargarizans and their enzyme inhibition activities and brine shrimp lethality. Nat. Prod. Commun. 13(7): 827-830. https://doi.org/10.1177/1934578X1801300710

Zegura B, Heath E, Cernosa A, Filipic M 2009. Combination of in vitro bioassays for the determination of cytotoxic and genotoxic potential of wastewater, surface water and drinking water samples. Chemosphere 75(11), 1453–1460. https://doi.org/10.1016/j.chemosphere.2009.02.041

Zeiger E 2001. Mutagens that are not carcinogens: faulty theory or fault tests? Mutat. Res. Genet. Toxicol. Environ. Mutagen. 492: 9-38. https://doi.org/10.1016/s1383-5718(01)00153-x

Downloads

Publicado

2024-11-14

Como Citar

SOARES, Eva Ramona Pereira; CASTILHO, Pamella Fukuda de; OLIVEIRA, Kelly Mari Pires de; CASTRO, David Tsuyoshi Hiramatsu de; SANTOS, Edson Lucas dos; TORRES, Viviana Oliveira; CASTRO, Thiago Luis Aguayo de; CARDOSO, Claudia Andrea Lima; ANTONIALLI-JUNIOR, William Fernando. Cytotoxic and Mutagenic Effects and cell Viability of Polybia sericea Social Wasp Venom (Hymenoptera: Vespidae). Fronteira: Journal of Social, Technological and Environmental Science, [S. l.], v. 13, n. 4, p. 62–74, 2024. DOI: 10.21664/2238-8869.2024v13i4.p62-74. Disponível em: https://revistas2.unievangelica.edu.br/index.php/fronteiras/article/view/7250. Acesso em: 21 nov. 2024.