Traços Funcionais de Plantas Nativas do Bioma Cerrado: Uma Revisão Sistemática

Autores

DOI:

https://doi.org/10.21664/2238-8869.2024v13i2.p50-69

Palavras-chave:

traços funcionais, bioma Cerrado, revisão de literatura

Resumo

O bioma Cerrado abriga mais de 12.000 espécies vegetais nativas, distribuídas em 11 fitofisionomias, incluindo áreas campestres, savânicas e florestais. Essa diversidade de ambientes confere às plantas nativas traços funcionais específicos. Para investigar esses traços funcionais, realizou-se uma pesquisa na base de dados Web of Science, o que resultou no total de 1227 publicações, das quais 482 foram retidas para análise após a aplicação de critérios de filtragem. Foram empregados métodos de cienciometria para a obtenção de métricas de publicação e análise de conteúdo dos artigos. Observou-se que os traços funcionais mais frequentes nas publicações estão relacionados às temáticas como fenologia, fotossíntese, ocorrência de fogo, herbivoria, polinização, área foliar, carbono, capacidade de rebrota, concorrência, adaptações à seca, anatomia vegetal e dispersão de sementes. O número de publicações foi crescente durante o período analisado (1991-2022), principalmente a partir do ano 2011, com ao menos 20 artigos publicados anualmente. Os temas básicos de pesquisa foram Cerrado, mudança climática, ecologia do fogo e déficit hídrico, os temas motores incluíram assuntos relacionados, principalmente, à fotossíntese e mudança climática. Com base nas análises, observa-se que os traços funcionais podem ser classificados em demográficos, fenológicos, fisiológicos, morfológicos, morfofenológicos e morfofisiológicos. Apesar deste estudo ser abrangente, ressalta-se que o número de artigos publicados investigando os traços funcionais de plantas nativas do Cerrado é incipiente, principalmente diante das rápidas alterações de uso e cobertura da terra que ocorrem no bioma e que podem afetar significativamente a flora. São necessários mais estudos para gerar conhecimentos e preencher as lacunas em relação às respostas e adaptações das plantas do bioma às diferentes condições e limitações ambientais, principalmente em um cenário de mudança climática, alterações no uso do solo, fragmentação de habitats, invasão de ambientes naturais por espécies exóticas e contaminação por agroquímicos.

Referências

Aria M, Cuccurullo C 2017. Bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959-975.

Ávila MA de, Azevedo IFP de, Antunes JR, Souza CR de, Santos RM dos, Fonseca RS2022. Temperature as the main factor affecting the reproductive phenology of the dioecious palm Mauritiella armata (Arecaceae). Acta Botanica Brasilica 36: e2021abb0111.Balduf C, Dias AS, Corrêa CE, Santos FAM 2021. Bark harvesting by human population shapes tree allometry in an economically important species of the Brazilian savanna. Forest Ecology And Management 496: 119465.

Ballarin CS, Hachuy-Filho L, Doria MJW, Giffu MM, Polizello DS, Oliveira PH, Lacerda-Barbosa PA and Amorim FW 2022. Intra‐seasonal and daily variations in nectar availability affect bee assemblage in a monodominant afforested Brazilian Cerrado. Austral Ecology, 47(6): 1315-1328.

Wensheng B, Jihong H, Han X, Runguo Z, Yi D, Yide L, Mingxian L, Jinsong W, Cancan Z 2019. Plant Functional Traits Are the Mediators in Regulating Effects of Abiotic Site Conditions on Aboveground Carbon Stock-Evidence From a 30 ha Tropical Forest Plot. Frontiers in Plant Science 9

Callon M, Courtial JP, Laville F 1991. Co-word analysis as a tool for describing the network of interactions between basic and technological Research: the case of polymer chemistry. Scientometrics 22:155–205.

Carlos NA, Rossatto DR 2017. Leaf traits combinations may explain the occurrence of savanna herbaceous species along a gradient of tree encroachment. Theoretical And Experimental Plant Physiology 29(3): 155-163.

Cassel JB, Rother JM, Pimenta BD, Ludwig RL, Santos DB 2022. Auxina: Ação Do Hormônio Indutor De Crescimento Em Soja, Coletânea Internacional De Pesquisa Em Ciências Agrárias E Biológicas 1: 31-44.

Castañeda K et al. 2022. Highway Planning Trends: a bibliometric analysis. Sustainability 14(9): 5544.

Cebrino J, Lacruz SP De 2020. A worldwide bibliometric analysis of published literature on workplace violence in healthcare personnel. Plos One 15(11): 0242781.

AA, Salehi H, Yunus MMd, Farhadi H, Fooladi M, Farhadi M, Ebrahim AA 2013. A comparison between two main academic literature collections: Web of Science and Scopus databases. Asian Social Science 9(5): 18-26.

Cobo MJ, López-Herrera AG, Herrera-Viedma E, Herrera F 2012. Scimat: a New Science Mapping Analysis Software Tool. Journal of the Association for Information Science and Technology 8(63): 1609-1630.

Cordeiro NG et al. 2021. The role of environmental filters in Brazilian savanna vegetation dynamics. Forest Ecology And Management 500: 119645.

Díaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Prentice IC 2015. The global spectrum of plant form and function. Nature 529(7585): 167-171.

Dormezil S, Khoshgoftaar T, Robinson-Bryant F 2019. Differentiating between educational data mining and learning analytics: A bibliometric approach. Montreal, 6 p.

Fajardo A, Siefert, A 2016. Phenological variation of leaf functional traits within species. Oecologia 180: 951–959.

Faria IA et al. 2022. Ant pollination, phenology, and breeding system of Microstachys serrulata (Mart. & Zucc.) Müll. Arg. (Euphorbiaceae) in the Brazilian savanna. Plant Ecology 223(10): 1247-1260.

Faria LRR, Lopes AV, Pacheco RC 2015. Resource availability and the organization of stingless bee communities (Hymenoptera: Meliponini) in a tropical forest reserve in Bahia, Brazil. Sociobiology 62(3): 356-364.

Ferraz KMPMB, Ferreira FA, Marques JJGS et al. 2013. The role of non-volant mammals in the seed dispersal of woody plants in a tropical forest of Brazil. Biotropica 45(6): 705-712.

Ferrero V et al. 2019. Complex Patterns In Tolerance and Resistance To Pests And Diseases Underpin The Domestication Of Tomato. New Phytologist 1(226): 254-266.

Filho JBS, Borges JD 2018. Ocorrência de raízes gemíferas em Tabebuia roseoalba (Ridl.) Sandwith (Bignoniaceae, Lamiales). Ciência Florestal 4(28): 1789-1797.

Fritz Ma, Rosa S, Sicard A 2018. Mechanisms Underlying the Environmentally Induced Plasticity of Leaf Morphology. Frontiers In Genetics 9: 1-25.

Funk JL et al. 2017. Revisiting the H oly G rail: using plant functional traits to understand ecological processes. Biological Reviews 92(2): 1156-1173.

Furquim LC et al. 2018. Relação entre plantas nativas do Cerrado e água. Científic@ - Multidisciplinary Journal 2(5): 146-156.

Garcia, L. M., Pastorini, L. H., Souza, L. A. d. (2022). Efeito Alelopático De Tecoma Stans, Na Germinação e Crescimento Inicial de Lactuca Sativa e de Três Espécies Nativas da Bacia do Rio Pirapó- Pr. J. Biotechnol. Biodivers., 3(10), 194-205.

Gardner TA 2006. Tree-grass coexistence in the Brazilian cerrado: demographic consequences of environmental instability. Journal Of Biogeography 33(3): 448-463.

Gontijo BAC, Carvalho LOD, Loyola RD et al. 2020. Seed dispersal by ants in Brazilian ecosystems: a review. Acta Amazonica 50(3): 193-206.

Grime JP 1979. Plant Strategies and Vegetation Processes. John Wiley & Sons, Ltda, New York, 222 pp.

Haridasan M 2008. Nutritional Adaptations Of Native Plants Of the Cerrado Biome In Acid Soils. Brazil Journal of Plant Physiology 3(20): 183-195.

Herrera CM, Medrano M, Rey PJ, Sánchez-Lafuente AM, García MB, Guitián J, Manzaneda AJ 2002. Interaction of pollinators and herbivores on plant fitness suggests a pathway for correlated evolution of mutualism- and antagonism-related traits. Proceedings Of The National Academy Of Sciences 99(26): 16823-16828.

Jesus MV et al. 2022. Arbuscular mycorrhizae alleviate water deficit in Dipteryx alata Vogel: seedling quality and resilience. Canadian Journal Of Forest Research 52(3): 320-327.

Karvatte JN 2014. Microclima em sistemas de integração e características quanti-qualitativas da sombra de espécies arbóreas nativas e cultivada, no cerrado. 2014. 81 f. Dissertação de Mestrado. Estadual do Oeste do Paraná, Marechal Cândido Rondon, 81 pp.

Klink CA, Machado RB 2005. Conservation of the Brazilian Cerrado. Conservation Biology 19(3): 707-713.

Kuhlmann M, Ribeiro JF 2016. Evolution of seed dispersal in the Cerrado biome: ecological and phylogenetic considerations. Acta Botanica Brasilica 30(2): 271–282.

Kumari A & Kaur R 2020. A review on morpho-physiological traits of plants under phthalates stress and insights into their uptake and translocation. Plant Growth Regulation 91(3): 327–347.

Lavorel S et al. 2013. A novel framework for linking functional diversity of plants with other trophic levels for the quantification of ecosystem services. Journal Of Vegetation Science 24(5): 942-948.

Lima AL, Silva CI, Alves RS 2016. Reproductive phenology and pollination of Tabebuia roseoalba (Bignoniaceae) in the Brazilian Cerrado. Revista de Biología Tropical 64(4): 1491-1502.

Maglianesi MA et al. 2014. Morphological traits determine specialization and resource use in plant–hummingbird networks in the neotropics. Ecology, 95: 3325-3334.

Magna GAM, Machado SA, Portella RB, Carvalho MF 2013. Chumbo E Cádmio Detectados em Alimentos Vegetais e Gramíneas no Município de Santo Amaro-Bahia, Quím. Nova 36(7): 989-997.

Martínez-Vilalta J et al. 2010. Interspecific Variation In Functional Traits, Not Climatic Differences Among Species Ranges, Determines Demographic Rates Across 44 Temperate and Mediterranean Tree Species. Journal of Ecology 6(98): 1462-1475.

Meilhac J, Deschamps L, Maire V 2020. Both selection and plasticity drive niche differentiation in experimental grasslands. Nature Plants 6(28): s41477.

Melo JT 2003. Cultivo de Guariroba (Syagrus oleracea Becc.) em sistema consorciado com espécies florestais no Cerrado. Comunicado Técnico 97, Embrapa Cerrados, Planaltina, 2 pp.

Meyer RS, DuVal A, Jensen HH 2012. Patterns and processes in crop domestication: an historical review and quantitative analysis of 203 global food crops. New Phytologist 1(196): 29-48.

Miatto RC, Batalha MA 2018. Are the cerrado and the seasonal forest woody floras assembled by different processes despite their spatial proximity? Journal of Plant Ecology 11(5): 740–750.

Morais VA et al. 2020. Spatial distribution of soil carbon stocks in the Cerrado biome of Minas Gerais, Brazil. Catena 185: 104285.

Neto GMC, Ramos ABB, Oliveira Júnior GG 2019. Etnobotânica: o estudo das plantas medicinais da Caatinga no Ensino Médio. in: Congresso internacional das licenciaturas, Recife. Anais [...]. Recife: Instituto Internacional Despertando Vocações, 2019. p. 1-19.

Oliveira ACG et al. 2021. Growth and competition between a native leguminous forb and an alien grass from the Cerrado under elevated CO 2. Austral Ecology 46(5): 750-761.

Oliveira DG et al. 2021. Lonchocarpus cultratus, a Brazilian savanna tree, endures high soil Pb levels. Environmental Science And Pollution Research 28(36): 50931-50940.

Pérez-Harguindeguy N et al. Corrigendum to: new handbook for standardised measurement of plant functional traits worldwide. Australian Journal Of Botany 64(8): 715.

Pizo MA et al. 2022. Abundance predominates over niche factors as determinant of the frequency of interactions between frugivorous birds and plants. Biotropica 54(3): 627-634.

Ramos FN, Farias FR, Souza FC 2018. Diversity and temporal variation of bees in a Cerrado fragment in southeastern Brazil. Neotropical Entomology 47(4): 504-514.

Rech AR et al. 2018. Pollinator availability, mating system and variation in flower morphology in a tropical savanna tree. Acta Botanica Brasilica 32(3): 462-472.

Reynolds MP et al. 2016. An integrated approach to maintaining cereal productivity under climate change. Global Food Securit 8: 9-18.

Santos LAC 2020. Agroecologia e conhecimento tradicional: uma análise bibliométrica. Tecnia 5(1): 153-179.

Santos LAC et al. 2021. Indicadores socioambientais em sistemas agroflorestais no Cerrado goiano. Revista Ibero-Americana de Ciências Ambientais 12(1): 54-65.

Santos LAC, MIRANDA SC, SILVA NETO CM 2020. Fitofisionomias do Cerrado: definições e tendências. Élisée - Revista de Geografia da UEG 9(2): e922022.

Sato MN et al. 2018. Fire-induced damage to Qualea multiflora Mart. seeds depends on fruit protection and the position in the tree crown. Plant Biology 20(6): 1036-1041.

Schouteden C, Serwas D, Pálfy M, Dammermann a 2015. The Ciliary Transition Zone Functions In Cell Adhesion But Is Dispensable For Axoneme Assembly In C. Elegans, Journal of Cell Biology 210(1): 35-44.

Silva IA et al. 2011. Plant functional types in Brazilian savannas: the niche partitioning between herbaceous and woody species. Perspectives In Plant Ecology, Evolution And Systematics 13(3): 201-206.

Silva WR, Leite FA, Tabarelli M 2013. Seed dispersal and defaunation of economically important plants in human-modified landscapes of northeastern Brazil. Ecological Applications 23(6): 1533-1545.

Siqueira MF, Coelho FM, Boschin FG 2017. Aromatic plants from Brazilian Cerrado and their honey pollen spectrum. Grasas y Aceites 68(2): e247.

Souza EV et al. 2022. Structural plasticity in leaves of Schinus terebinthifolius (Anacardiaceae) populations from three contrasting tropical ecosystems1. The Journal Of The Torrey Botanical Society 149(3): 187-193.

Sporbert M et al. 2022. Functional traits influence patterns in vegetative and reproductive plant phenology – a multi-botanical garden study. New Phytologist 235: 2199-2210.

Strassburg BB et al 2017. Moment of truth for the Cerrado hotspot. Nature Ecology & Evolution 1(4): 1-3.

Ting MT, Ni J, Guo-Hong W 2017. Plant functional traits, environments and ecosystem functioning. Chinese Journal of Plant Ecology 31: 150-165.

Tranzillo, Naron Silva 2021. Interações planta-planta em campo rupestre arbustivo dominado por Vellozia Pyrantha: Espécie e fitofisionomias prioritárias para conservação, SEMIC, 23.

Tripathi M, Kumar S, Sonker SK, Babbar P 2018. Occurrence of author Keywords and keywords plus in social sciences and humanities research : A preliminary study.COLLNET Journal of Scientometrics and Information Management 12(2): 215-232.

Vieira AO, Lomônaco C 2014. Respostas De Plantas Jovens Hymenaea courbaril L. (Fabaceae) à simulação de Danos por herbívoros. Bioscience Journal 30(4): 1222-1230.

Violle C. et al. 2007. Let the concept of trait be functional! Oikos 116(5): 882-892.

Violle C. et al. 2012. The return of the variance: intraspecific variability in community ecology. Trends In Ecology & Evolution 27(4): 244-252.

Wang, JY 2017. Effects of Drought Stress on Morphophysiological Traits, Biochemical Characteristics, Yield, and Yield Components in Different Ploidy Wheat. Advances in Agronomy: 139–173.

Wigley BJ et al. 2021. Corrigendum to: a handbook for the standardised sampling of plant functional traits in disturbance-prone ecosystems, with a focus on open ecosystems. Australian Journal Of Botany 69(2): 110.

Yang J et al. 2020. Intraspecific Variation In Tree Growth Responses To Neighbourhood Composition and Seasonal Drought In A Tropical Forest. Journal of Ecology 1(109): 26-37.

Yin H et al. 2022. Trends Of Calcium Silicate Biomaterials In Medical Research and Applications: A Bibliometric Analysis From 1990 To 2020. Frontiers in Pharmacology (13):1-14.

Zanzarini V et al. 2022. Flammability in tropical savannas: variation among growth forms and seasons in cerrado. Biotropica 54(4): 979-987.

Downloads

Publicado

2024-07-15

Como Citar

SANTOS, Leovigildo Aparecido Costa; SILVA-NETO, Carlos de Melo; TREVISAN, Adriana Carla Dias. Traços Funcionais de Plantas Nativas do Bioma Cerrado: Uma Revisão Sistemática. Fronteira: Journal of Social, Technological and Environmental Science, [S. l.], v. 13, n. 2, p. 50–69, 2024. DOI: 10.21664/2238-8869.2024v13i2.p50-69. Disponível em: https://revistas2.unievangelica.edu.br/index.php/fronteiras/article/view/6997. Acesso em: 30 out. 2024.