Response of the Antioxidant System and Physiology of Seed Germination of Phaseolus vulgaris L. under the Action of Aqueous Extract of Bauhinia forficata Link

Autores

  • Erly Carlos Porto Unioeste - Universidade estadual do Oeste do Parana
  • Ezequiel Marçal Zanchetti da Luz
  • Guilherme de Almeida Garcia Rodrigues
  • Maiara Iadwizak Ribeiro
  • Jaqueline Malagutti Corsato
  • Andrea Maria Teixeira Fortes

DOI:

https://doi.org/10.21664/2238-8869.2021v10i1.p461-476

Palavras-chave:

alelopatia, enzimas antioxidantes, germinação

Resumo

O objetivo do presente trabalho foi avaliar o efeito de diferentes proporções de extrato aquoso de Bauhinia forficata L. sobre o processo fisiológico germinativo e a atividade enzimática de sementes de feijão no decorrer da germinação. Os tratamentos foram compostos pelas proporções 0 (água); 2.5; 5; 7.5 e 10% (folhas secas da B. forficata) e pelas horas de embebição das sementes. O delineamento foi inteiramente casualizado com fator duplo. Foram avaliados a germinação, o índice de velocidade de germinação, o tempo médio de germinação, o índice alelopático (RI), a atividade das enzimas superóxido-dismutase, catalase e peroxidase. O índice de velocidade e o tempo médio de germinação como também o índice alelopatico foram afetados negativamente conforme o aumento das proporções de extrato testadas. Observamos que nos cotilédones das sementes de feijão o início da embebição apresentou atividade das enzimas avaliadas superiores aos valores encontrados no final do processo germinativo, enquanto que no eixo embrionário os maiores valores foram verificados no final do processo germinativo. O aumento das proporções de extrato das folhas de B. forficata afetaram as atividades enzimáticas no processo germinativo das sementes de feijão resultando em um atraso da germinação.

Referências

Almeida GD, Zucoloto M, Zetun MC, Coelho I, Sobreir FM 2008. Oxidative stress in vegetable cells mediated by allelochemicals. Rev Fac Nac de Agro Medellìn 61(1):4237-4247.
Alscher RG, Erturk N, Heath LS 2002. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J. Exp Bot 53:1331–1341.
Apel K, Hirt H 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev of Plant Biol 55:373–399.
Azevedo RA, Alas RM, Smith RJ, Lea PJ 1998. Response of antioxidant enzymes to transfer from elevated carbon dioxide to air and ozone fumigation, in the leaves and roots of wild-type and a catalase-deficient mutant of barley. Physiol Plant. 104:280-292.
Barborsa MR, Sailva MMA, Willadino L, Ulisses C, Camara TR 2014. Geração e desintoxicação enzimática de espécies reativas de oxigênio em plantas. Ciência Rural 44(3):453-460.
Brasil 2009. Regras para análise de sementes. Ministério da Agricultura, Pecuária e Abastecimento. Secretaria de Defesa Agropecuária. Brasília: Mapa, 399 pp.
Bradford MM 1976. A rapid and sensitive method for the quantification of microgram quantities of proteins utilizing the principle of protein-dye binding. Anal Biochem 72:248-254.
Beauchamp C, Fridovich I 1971. Superoxide dismutase improved as says and as say applicable to acrylamide gels. Anal Biochem 44:276-287.
Bohm PAF, Zanardo FML, Ferrarese MLL, Ferrarese OF 2006. Peroxidase activity and lignification in soybean root growth-inhibition by juglone. Biol plant 50(2):315-317.
Bewley JD, Bradford K, Hilhorst H, Nonogaki H 2013. Seeds Physiology of development and germination vol. III. Springer-Verlag, New York, 392 pp.
Blanco JA 2007. The representation of allelopathy in ecosystem-level forest models. Ecolo model. 109:65-67.
Carpanezzi AA, Carpanezzi OTB 2006. Espécies Nativas Recomendadas para Recuperação Ambiental no Estado do Paraná, em Solos Não Degradados. Vol. I Colombo: Embrapa Florestas, 57 pp.
Carvalho WP, Carvalho GJ, Neto DDOA, Teixeira LGV 2014. Allelopathy of green manures extracts on germination and initial growth of the lettuce. Biosc J, 30(3):1-11.
Cheng, F. Cheng Z. 2015. Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Front Plant Sci. 6:1020.
Cruz-Ortega R, Ayala-Cordero G, Anaya AL. 2002. Allelochemical stress produced by the aqueous leachate of Callicarpa acuminata: effects on roots of bean, maize, and tomato. Physiol Plant 116:20–27.
Cruz-Ortega R, Lara-Núñez A, Anaya AL 2007. Allelochemical stress can trigger oxidative damage in receptor plants. Plant Sign Behavior 2(4):269-270.
Daneluzzi GS, Dos Santos VHM, Silva LP, Da Silva RMG 2014. Evaluation of phytotoxic and cytotoxic potential of Pyrostegia venusta (Ker-gawl.) Miers (bignoniaceae). Biosc J 30(4):1231-1240.
Edmond JB, Drapala WJ 1958. The effects of temperature, sand and soil, and acetone on germination of okra seed. Proce American Soc Horti Sci 71:428-434.
Ferreira A, Aquila MA 2000. Alelopatia: uma área emergente da ecofisiologia. Rev. Bras. de Fisiol. Vegetal 12:175-204.
Gniazdowska A, Krasuska U, Andrzejczak O, Soltys D 2015. Allelopathic Compounds as Oxidative Stress Agents: Yes or NO. In Gupta JK, Igamberdiev AU, Reactive Oxygen and Nitrogen SpeciesSignaling and Communication in Plants, Signaling and Communication in Plants. Springer international Publishing, Switzerland, p.155–176.
Gniazdowska A, Bogatek R 2005. Allelopathic interactions beween plants. Multisite action of allelochemicals. Acta Physiol Plant 27(3):395–407.

Gao X, Li MEI, Gao Z, Li C, Sun Z 2009. Allelopathic effects of Hemistepta lyrata on the germination and growth of wheat, sorghum, cucumber, rape, and radish seeds. Weed Biol Manag 9(3):243-249.
Harper JR, Balke NE 1981. Characterization of the inhibition of K+ absorption in oat roots by salicylic acid. Plant Physiol. 68:1349–1353.
Labouriau LG 1983. A germinação de sementes. Organização dos Estados Americanos, Washington, 174 pp.
Lorenzi H 2002. Árvores Brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil. Vol II, 4 ed. Nova Odessa, São Paulo, 384 pp.
Manoel DD, Doiche CFR, Ferrari TB, Ferreira G. Atividade alelopática dos extratos fresco e seco de folhas de barbatimão (Stryphnodendron adstringens (Mart.) Coville) e pata-de vaca (Bauhinia forficata link) sobre a germinação e desenvolvimento inicial de plântulas de tomate. Sem Ciênc Agrs 30(1):63-70.
Maraschin-Silva F, AQÜILA MEA 2006. Contribuição ao estudo do potencial alelopático de espécies nativas. Rev Árvore 30(4):547-555.
Meira RO 2016. Alelopátia entre espécies de diferentes categorias sucessionais utilizadas na restauração ecológica, Master Thesis, Universidade Estadual do Oeste do Paraná, 96 pp.
Paula CS, Canteli VCD, Silva CB, Miguel OG, Miguel MD 2015. Potencial fitotóxico com enfoque alelopático de Bauhinia ungulata L. sobre sementes e plântulas de alface e cebola. Rev Ciênc Farm Básica e Apli 36(3):445-452.
Passardi F, Cosio C, Penel C, Dunand C, 2005. Peroxidases have more functions than a Swiss army knife. Plant Cell Rep 24: 255–265.
Quiroga M, Guerrero C, Botella MA, Barceló A, Amaya I, Medina MI, Alonso FJ, Milrad FS, Tigier H, Valpuesta V 2000. A tomato peroxidase involved in the synthesis of lignin and suberin. Plant Physiol 122:1119–1128.
Reigosa MJ, Sánchez-Moreiras A, González L 1999. Ecophysiological approach in allelopathy. Crit. Rev. Plant Sci 18(5):577-608.
Rezende CP, Pinto JC, Evangelista AR, Santos IPA 2003. Alelopatia e suas interações na formação e manejo de pastagens. Boletim Agrop 54:1-55.
Resende LA, Pinto LVA, Santos EC, Silva S 2015. Crescimento e sobrevivência de espécies arbóreas em diferentes modelos de plantio na recuperação de área degradada por disposição de resíduos sólidos urbanos. Rev Árvore 39(1):147-157.
Rice EL, 1984. Allelopathy, vol.II, Academic Press, Orlando, 353pp.
Ribeiro VM, Spiassi A, Marcon TR, Lima GP, Corsato JM, Fortes AMT 2017. Antioxidative enzymes of Cucumis sativus seeds are modulated by Leucaena leucocephala extracts. Acta Scientiarum 39:373-380.
Rizzardi MA, Neves R, Lamb TD, Johann LB 2008. Potencial alelopático da cultura da canola (Brassica napus L. var. oleifera) na supressão de picão-preto (Bidens sp.) e soja. Rev Bra Agroc 14(2):239-248.
Silva JB, Nakagawa J (1995) Estudos de fórmulas para cálculo de velocidade de
germinação. Informativo Abrates 5:62-73.
Schopfer P, Plachy C, Frahry G 2001. Release of reactive oxygen intermediates (superoxide radicals, hydrogen peroxide & hydroxyl radicals) and peroxidase in germinating radish seeds controlled by light, gibberellin, and abscisic acid. Plant Physiol 125:1591–1602.
Souza filho APS, RODRIGUES LRA, Rodrigues TJD 1996. Efeitos de extratos aquosos de assa-peixe sobre a germinação de três espécies de braquiária. Plant Daninha 14(2):93-101.
Teisseire H, Guy V 2000. Copper-induced changes in antioxidant enzymes activities in fronds of duckweed (Lemma minor). Plant Science 153:65-72.
Viçosi KA, Ferreira AAS, Oliveira LAB, Rodrigues F 2017. Estresse hídrico simulado em genótipos de feijão, milho e soja. Rev Agri Neot 4(1):36-42.
Villela FA, Doni filho L, Sequeira EL 1991. Tabela de potencial osmótico em função da concentração de polietileno glicol 6.000 e da temperatura. Pes Agropec Bras 26:1957-1968.
Wardle DA. Ahmed M, Nicholson KS 1991. Allelopathic influence of nodding thistle (Carduus nutans L.) seeds on germination and radicle growth of pasture plants. J Agric Res 34(2):185-191.

Downloads

Publicado

2021-03-03

Como Citar

PORTO, Erly Carlos; DA LUZ, Ezequiel Marçal Zanchetti; RODRIGUES, Guilherme de Almeida Garcia; RIBEIRO, Maiara Iadwizak; CORSATO, Jaqueline Malagutti; FORTES, Andrea Maria Teixeira. Response of the Antioxidant System and Physiology of Seed Germination of Phaseolus vulgaris L. under the Action of Aqueous Extract of Bauhinia forficata Link. Fronteira: Journal of Social, Technological and Environmental Science, [S. l.], v. 10, n. 1, p. 461–476, 2021. DOI: 10.21664/2238-8869.2021v10i1.p461-476. Disponível em: https://revistas2.unievangelica.edu.br/index.php/fronteiras/article/view/3034. Acesso em: 23 jan. 2025.